544 research outputs found

    Electron tunnel sensor technology

    Get PDF
    Researchers designed and constructed a novel electron tunnel sensor which takes advantage of the mechanical properties of micro-machined silicon. For the first time, electrostatic forces are used to control the tunnel electrode separation, thereby avoiding the thermal drift and noise problems associated with piezoelectric actuators. The entire structure is composed of micro-machined silicon single crystals, including a folded cantilever spring and a tip. The application of this sensor to the development of a sensitive accelerometer is described

    Astronomy using basic Mark 2 very long baseline interferometry

    Get PDF
    Two experiments were performed in April and September 1976 to determine precise positions of radio sources using conventional Mark 2 VLBI techniques. Four stations in the continental United States observed at a wavelength of 18 cm. The recording bandwidth was 2 MHz. The preliminary results using analyses of fringe rate and delay are discussed and the source positions compared with the results of other measurements

    Comparison of VLBI, TV and traveling clock techniques for time transfer

    Get PDF
    A three part experiment was conducted to develop and compare time transfer techniques. The experiment consisted of (1) a very long baseline interferometer (VLBI), (2) a high precision portable clock time transfer system between the two sites, and (3) a television time transfer. A comparison of the VLBI and traveling clock shows each technique can perform satisfactorily at the five nsec level. There was a systematic offset of 59 nsec between the two methods, which we attributed to a difference in epochs between VLBI formatter and station clock. The VLBI method had an internal random error of one nsec at the three sigma level for a two day period. Thus, the Mark II system performed well, and VLBI shows promise of being an accurate method of time transfer. The TV system, which had technical problems during the experiment, transferred time with a random error of about 50 nsec

    The Hardness-Intensity Diagram of Cygnus X-3: Revisiting the Radio/X-Ray States

    Full text link
    Cygnus X-3 is one of the brightest X-ray and radio sources in the Galaxy, and is well known for its erratic behaviour in X-rays as well as in the radio, occasionally producing major radio flares associated with relativistic ejections. However, even after many years of observations in various wavelength bands Cyg X-3 still eludes clear physical understanding. Studying different emission bands simultaneously in microquasars has proved to be a fruitful approach towards understanding these systems, especially by shedding light on the accretion disc/jet connection. We continue this legacy by constructing a hardness-intensity diagram (HID) from archival Rossi X-ray Timing Explorer data and linking simultaneous radio observations to it. We find that surprisingly Cyg X-3 sketches a similar shape in the HID to that seen in other transient black hole X-ray binaries during outburst but with distinct differences. Together with the results of this analysis and previous studies of Cyg X-3 we conclude that the X-ray states can be assigned to six distinct states. This categorization relies heavily on the simultaneous radio observations and we identify one new X-ray state, the hypersoft state, similar to the ultrasoft state, which is associated to the quenched radio state during which there is no or very faint radio emission. Recent observations of GeV flux observed from Cyg X-3 (Tavani et al. 2009; Fermi LAT Collaboration et al. 2009) during a soft X-ray and/or radio quenched state at the onset of a major radio flare hint that a very energetic process is at work during this time, which is also when the hypersoft X-ray state is observed. In addition, Cyg X-3 shows flaring with a wide range of hardness.Comment: 17 pages, 9 figures, accepted for publication in MNRA

    A novel electron tunneling infrared detector

    Get PDF
    The pneumatic infrared detector, originally developed by Golay in the late 1940s, uses the thermal expansion of one cm(exp 3) of xenon at room temperature to detect the heat deposited by infrared radiation. This detector was limited by thermal fluctuations within a 10 Hz bandwidth, but suffered from long thermal time constants and a fragile structure. Nevertheless, it represents the most sensitive room temperature detector currently available in the long wavelength infrared (LWIR). Fabrication of this type of detector on smaller scales has been limited by the lack of a suitably sensitive transducer. Researchers designed a detector based on this principle, but which is constructed entirely from micromachined silicon, and uses a vacuum tunneling transducer to detect the expansion of the trapped gas. Because this detector is fabricated using micromachining techniques, miniaturization and integration into one and two-dimensional arrays is feasible. The extreme sensitivity of vacuum tunneling to changes in electrode separation will allow a prototype of this detector to operate in the limit of thermal fluctuations over a 10 kHz bandwidth. A calculation of the predicted response and noise of the prototype is presented with the general formalism of thermal detectors. At present, most of the components of the prototype have been fabricated and tested independently. In particular, a characterization of the micromachined electron tunneling transducer has been carried out. The measured noise in the tunnel current is within a decade of the limit imposed by shot noise, and well below the requirements for the operation of an infrared detector with the predicted sensitivity. Assembly and characterization of the prototype infrared detector will be carried out promptly
    • …
    corecore