8,395 research outputs found

    Calibration of thickness-dependent k-factors for germanium X-ray lines to improve energy-dispersive X-ray spectroscopy of SiGe layers in analytical transmission electron microscopy

    Get PDF
    We show that the accuracy of energy-dispersive X-ray spectroscopy can be improved by analysing and comparing multiple lines from the same element. For each line, an effective k-factor can be defined that varies as a function of the intensity ratio of multiple lines (e.g. K/L) from the same element. This basically performs an internal self-consistency check in the quantification using differently absorbed X-ray lines, which is in principle equivalent to an absorption correction as a function of specimen thickness but has the practical advantage that the specimen thickness itself does not actually need to be measured

    Storage and recall of weak coherent optical pulses with an efficiency of 25%

    Full text link
    We demonstrate experimentally a quantum memory scheme for the storage of weak coherent light pulses in an inhomogeneously broadened optical transition in a Pr^{3+}: YSO crystal at 2.1 K. Precise optical pumping using a frequency stable (about 1kHz linewidth) laser is employed to create a highly controllable Atomic Frequency Comb (AFC) structure. We report single photon storage and retrieval efficiencies of 25%, based on coherent photon echo type re-emission in the forward direction. The coherence property of the quantum memory is proved through interference between a super Gaussian pulse and the emitted echo. Backward retrieval of the photon echo emission has potential for increasing storage and recall efficiency.Comment: 5,

    Experimental realization of Dicke states of up to six qubits for multiparty quantum networking

    Get PDF
    We report the first experimental generation and characterization of a six-photon Dicke state. The produced state shows a fidelity of F=0.56+/-0.02 with respect to an ideal Dicke state and violates a witness detecting genuine six-qubit entanglement by four standard deviations. We confirm characteristic Dicke properties of our resource and demonstrate its versatility by projecting out four- and five-photon Dicke states, as well as four-photon GHZ and W states. We also show that Dicke states have interesting applications in multiparty quantum networking protocols such as open-destination teleportation, telecloning and quantum secret sharing.Comment: 4 pages, 4 figures, RevTeX

    Formation of Low Threshold Voltage Microlasers

    Get PDF
    Vertical cavity surface emitting lasers (VCSELs) with threshold voltages of 1.7V have been fabricated. The resistance-area product in these new vertical cavity lasers is comparable to that of edge-emitting lasers, and threshold currents as low as 3 mA have been measured. Molecular beam epitaxy was used to grow n-type mirrors, a quantum well active region, and a heavily Be-doped p-contact. After contact definition and alloying, passive high-reflectivity mirrors were deposited by reactive sputter deposition of SiO2/Si3N4 to complete the laser cavity

    A New Measurement of the Temperature Density Relation of the IGM From Voigt Profile Fitting

    Full text link
    We decompose the Lyman-{\alpha} (Ly{\alpha}) forest of an extensive sample of 74 high signal-to-noise ratio and high-resolution quasar spectra into a collection of Voigt profiles. Absorbers located near caustics in the peculiar velocity field have the smallest Doppler parameters, resulting in a low-bb cutoff in the bb-NHIN_{\text{HI}} set by the thermal state of intergalactic medium (IGM). We fit this cutoff as a function of redshift over the range 2.0z3.42.0\leq z \leq 3.4, which allows us to measure the evolution of the IGM temperature-density (T=T0(ρ/ρ0)γ1T= T_0 (\rho/ \rho_0)^{\gamma-1}) relation parameters T0T_0 and γ\gamma. We calibrate our measurements against Lyα\alpha forest simulations, using 21 different thermal models of the IGM at each redshift, also allowing for different values of the IGM pressure smoothing scale. We adopt a forward-modeling approach and self-consistently apply the same algorithms to both data and simulations, propagating both statistical and modeling uncertainties via Monte Carlo. The redshift evolution of T0T_0 shows a suggestive peak at z=2.8z=2.8, while our evolution of γ\gamma is consistent with γ1.4\gamma\simeq 1.4 and disfavors inverted temperature-density relations. Our measured evolution of T0T_0 and γ\gamma are generally in good agreement with previous determinations in the literature. Both the peak in the evolution of T0T_0 at z=2.8z = 2.8, as well as the high temperatures T01500020000T_0\simeq 15000-20000\,K that we observe at 2.4<z<3.42.4 < z < 3.4, strongly suggest that a significant episode of heating occurred after the end of HI reionization, which was most likely the cosmic reionization of HeII.Comment: Accepted for publication in ApJ, 23 pages, 26 figures, machine readable tables available onlin

    Full characterization of a three-photon GHZ state using quantum state tomography

    Full text link
    We have performed the first experimental tomographic reconstruction of a three-photon polarization state. Quantum state tomography is a powerful tool for fully describing the density matrix of a quantum system. We measured 64 three-photon polarization correlations and used a "maximum-likelihood" reconstruction method to reconstruct the GHZ state. The entanglement class has been characterized using an entanglement witness operator and the maximum predicted values for the Mermin inequality was extracted.Comment: 3 pages, 3 figure

    Decoherence assisting a measurement-driven quantum evolution process

    Full text link
    We study the problem of driving an unknown initial mixed quantum state onto a known pure state without using unitary transformations. This can be achieved, in an efficient manner, with the help of sequential measurements on at least two unbiased bases. However here we found that, when the system is affected by a decoherence mechanism, only one observable is required in order to achieve the same goal. In this way the decoherence can assist the process. We show that, depending on the sort of decoherence, the process can converge faster or slower than the method implemented by means of two complementary observables.Comment: Four pages, three figures included ([email protected]

    Experimental violation of a cluster state Bell inequality

    Full text link
    Cluster states are a new type of multiqubit entangled states with entanglement properties exceptionally well suited for quantum computation. In the present work, we experimentally demonstrate that correlations in a four-qubit linear cluster state cannot be described by local realism. This exploration is based on a recently derived Bell-type inequality [V. Scarani et al., Phys. Rev A 71, 042325 (2005)] which is tailored, by using a combination of three- and four-particle correlations, to be maximally violated by cluster states but not violated at all by GHZ states. We observe a cluster state Bell parameter of 2.59±0.082.59\pm 0.08, which is more than 7 standard deviations larger than the threshold of 2 imposed by local realism.Comment: 4 pages, 2 figure
    corecore