943 research outputs found

    A Non-Intrusive Polynomial Chaos Method for Uncertainty Propagation in CFD Simulations

    Get PDF
    An inexpensive non-intrusive polynomial chaos (NIPC) method for the propagation of input uncertainty in CFD simulations is presented. The method is straightforward to implement for any stochastic fluid dynamics problem and computationally less expensive than sampling or quadrature based non-intrusive methods. To validate the present NIPC approach, the method has been applied to: (1) an inviscid oblique shock wave problem with geometric uncertainty, (2) an inviscid expansion wave problem with geometric uncertainty, and (3) a subsonic, two-dimensional, laminar boundary layer flow over a flat plate with an uncertain free-stream dynamic viscosity. For all test cases, the statistics (mean and the standard deviation) obtained with the NIPC method were in good agreement with the results of the Monte Carlo simulations. A fourth order polynomial chaos expansion was sufficient to approximate the statistics and the shape of the output uncertainty distributions with the desired accuracy. Only in the shock region of the first test case a sixth order polynomial expansion was required to estimate the statistics of pressure within the 95% confidence intervals of the Monte Carlo results, since the shape of the distributions obtained with 3rd order spatially accurate Euler solutions were highly non-Gaussian in this region

    Turbulent boundary layer characteristics of flow over a compliant surface /

    Get PDF

    Real-time Detection and Rapid Multiwavelength Follow-up Observations of a Highly Subluminous Type II-P Supernova from the Palomar Transient Factory Survey

    Get PDF
    The Palomar Transient Factory (PTF) is an optical wide-field variability survey carried out using a camera with a 7.8 deg^2 field of view mounted on the 48 inch Oschin Schmidt telescope at Palomar Observatory. One of the key goals of this survey is to conduct high-cadence monitoring of the sky in order to detect optical transient sources shortly after they occur. Here, we describe the real-time capabilities of the PTF and our related rapid multiwavelength follow-up programs, extending from the radio to the γ-ray bands. We present as a case study observations of the optical transient PTF10vdl (SN 2010id), revealed to be a very young core-collapse (Type II-P) supernova having a remarkably low luminosity. Our results demonstrate that the PTF now provides for optical transients the real-time discovery and rapid-response follow-up capabilities previously reserved only for high-energy transients like gamma-ray bursts

    Uranium Monosulfide. The Ferromagnetic Transition. The Heat Capacity and Thermodynamic Properties from 1.5° to 350°K

    Full text link
    The heat capacity of uranium monosulfide was measured from 1.5° to 22°K by an isothermal (isoperibol) method and from 6° to 350°K by an adiabatic technique. The ferromagnetic transition at 180.1°K has a characteristic lambda shape and associated magnetic ordering entropy and enthalpy increments of 1.62 ± 0.2 cal °K−1mole−1 and 231 ± 20 cal mole−1, respectively, over the temperature range 0° to 230°K. The correlation of the thermal data with magnetic studies is discussed. The heat capacity below 9°K is represented by Cp  =  5.588 × 10−3T + 2.627 × 10−4T3 / 2 + 6.752 × 10−5T3cal°K−1mole−1Cp=5.588×10−3T+2.627×10−4T3∕2+6.752×10−5T3cal°K−1mole−1, in which the successive terms represent conduction electronic, magnetic, and lattice contributions. Values of the entropy [S°], enthaply function [(H° − H°0) / T][(H°−H°0)∕T], and Gibbs‐energy function [(G° − H°0) / T][(G°−H°0)∕T] are 18.64 ± 0.005, 8.94 ± 0.002, and − 9.70 ± 0.02 cal °K−1 mole−1, respectively, at 298.15°K. The Gibbs energy of formation at 298.15°K is − 72.9 ± 3.5 kcal mole−1.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70623/2/JCPSA6-48-1-155-1.pd

    A novel cellular pathway of antigen presentation and CD4 T cell activation in vivo

    Get PDF
    Dendritic cell activation of CD4 T cells in the lymph node draining a site of infection or vaccination is widely considered the central event in initiating adaptive immunity. The accepted dogma is that this occurs by stimulating local activation and antigen acquisition by dendritic cells, with subsequent lymph node migration, however the generalizability of this mechanism is unclear. Here we show that in some circumstances antigen can bypass the injection site inflammatory response, draining freely and rapidly to the lymph nodes where it interacts with subcapsular sinus (SCS) macrophages resulting in their death. Debris from these dying SCS macrophages is internalized by monocytes recruited from the circulation. This coordinated response leads to antigen presentation by monocytes and interactions with naïve CD4 T cells that can drive the initiation of T cell and B cell responses. These studies demonstrate an entirely novel pathway leading to initiation of adaptive immune responses in vivo

    Radiation effects on p+n InP junctions grown by MOCVD

    Get PDF
    The superior radiation resistance of InP over other solar cell materials such as Si or GaAs has prompted the development of InP cells for space applications. The early research on radiation effects in InP was performed by Yamaguchi and co-workers who showed that, in diffused p-InP junctions, radiation-induced defects were readily annealed both thermally and by injection, which was accompanied by significant cell recovery. More recent research efforts have been made using p-InP grown by metalorganic chemical vapor deposition (MOCVD). While similar deep level transient spectroscopy (DLTS) results were found for radiation induced defects in these cells and in diffused junctions, significant differences existed in the annealing characteristics. After injection annealing at room temperature, Yamaguchi noticed an almost complete recovery of the photovoltaic parameters, while the MOCVD samples showed only minimal annealing. In searching for an explanation of the different annealing behavior of diffused junctions and those grown by MOCVD, several possibilities have been considered. One possibility is the difference in the emitter structure. The diffused junctions have S-doped graded emitters with widths of approximately 0.3 micrometers, while the MOCVD emitters are often doped with Si and have widths of approximately 300A (0.03 micrometers). The difference in the emitter thickness can have important effects, e.g. a larger fraction of the total photocurrent is generated in the n-type material for thicker emitters. Therefore the properties of the n-InP material may explain the difference in the observed overall annealing behavior of the cells

    Electron-irradiated two-terminal, monolithic InP/Ga0.47In0.53As tandem solar cells and annealing of radiation damage

    Get PDF
    Radiation damage results from two-terminal monolithic InP/Ga(0.47)In(0.53)As tandem solar cells subject to 1 MeV electron irradiation are presented. Efficiencies greater than 22 percent have been measured by the National Renewable Energy Laboratory from 2x2 sq cm cells at 1 sun, AMO (25 C). The short circuit current density, open circuit voltage and fill factor are found to tolerate the same amount of radiation at low fluences. At high fluence levels, slight differences are observed. Decreasing the base amount of radiation at the Ga(0.47)In(0.53)As bottomcell improved the radiation resistance of J(sub sc) dramatically. This is turn, extended the series current flow through the subcell substantially up to a fluence of 3x10(exp 15) cm(exp -2) compared to 3x10(exp 14) cm(exp -2), as observed previously. The degradation of the maximum power output form tandem device is comparable to that from shallow homojunction (SHJ) InP solar cells, and the mechanism responsible for such degradation is explained in terms of the radiation response of the component cells. Annealing studies revealed that the recovery of the tandem cell response is dictated by the annealing characteristics exhibited by SHJ InP solar cells

    Rapidly decaying supernova 2010X: A candidate ".Ia" explosion

    Get PDF
    We present the discovery, photometric, and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with τ_d = 5 days and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M_r = −17 mag and has mean velocities of 10,000 km s^(−1). Our light curve modeling suggests a radioactivity-powered event and an ejecta mass of 0.16M_⊙. If powered by Nickel, we show that the Nickel mass must be very small (≈0.02 M_⊙) and that the supernova quickly becomes optically thin to γ -rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of aluminum or helium is present. If aluminum is present, we speculate that this may be an accretion-induced collapse of an O-Ne-Mg white dwarf. If helium is present, all observables of SN 2010X are consistent with being a thermonuclear helium shell detonation on a white dwarf, a “.Ia” explosion. With the 1 day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events

    High-efficiency, deep-junction, epitaxial InP solar cells on (100) and (111)B InP substrates

    Get PDF
    We report on the development and performance of deep-junction (approximately 0.25 micron), graded-emitter-doped, n(sup +)-p InP solar cells grown by metallorganic chemical vapor deposition (MOCVD). A novel, diffusion-transport process for obtaining lightly-doped p-type base regions of the solar cell is described. The I-V data and external quantum-efficiency response of these cells are presented. The best active-area AMO efficiency for these deep-junction cells on (100)-oriented InP substrates is 16.8 percent, with a J(sub SC) of 31.8 mA/sq cm, a V(sub OC) of 0.843 V, and a fill-factor of 0.85. By comparison, the best cell efficiency on the (111)B-oriented InP substrates was 15.0 percent. These efficiency values for deep-junction cells are encouraging and compare favorably with performance of thin-emitter (0.03 micron) epitaxial cells as well as that of deep-emitter diffused cells. The cell performance and breakdown voltage characteristics of a batch of 20 cells on each of the orientations are presented, indicating the superior breakdown voltage properties and other characteristics of InP cells on the (111)B orientation. Spectral response, dark I-V data, and photoluminescence (PL) measurements on the InP cells are presented with an analysis on the variation in J(sub SC) and V(sub OC) of the cells. It is observed, under open-circuit conditions, that lower-V(sub OC) cells exhibit higher band-edge PL intensity for both the (100) and (111)B orientations. This anomalous behavior suggests that radiative recombination in the heavily-doped n(sup +)-InP emitter may be detrimental to achieving higher V(sub OC) in n(sup +)-p InP solar cells

    The SED Machine: a robotic spectrograph for fast transient classification

    Get PDF
    Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come on line. At the present time, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing "follow-up drought". Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R\sim100) integral field unit (IFU) spectrograph with "Rainbow Camera" (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already proved lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized to spectral classification. Introduction of similar spectrographs on existing telescopes will help alleviate the follow-up drought and thereby accelerate the rate of discoveries.Comment: 21 pages, 20 figure
    corecore