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A Non-Intrusive Polynomial Chaos Method For
Uncertainty Propagation in CFD Simulations

Serhat Hosder∗, Robert W. Walters† and Rafael Perez‡

Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA

An inexpensive non-intrusive polynomial chaos (NIPC) method for the propagation
of input uncertainty in CFD simulations is presented. The method is straightforward to
implement for any stochastic fluid dynamics problem and computationally less expensive
than sampling or quadrature based non-intrusive methods. To validate the present NIPC
approach, the method has been applied to: (1) an inviscid oblique shock wave problem with
geometric uncertainty, (2) an inviscid expansion wave problem with geometric uncertainty,
and (3) a subsonic, two-dimensional, laminar boundary layer flow over a flat plate with
an uncertain free-stream dynamic viscosity. For all test cases, the statistics (mean and
the standard deviation) obtained with the NIPC method were in good agreement with the
results of the Monte Carlo simulations. A fourth order polynomial chaos expansion was
sufficient to approximate the statistics and the shape of the output uncertainty distributions
with the desired accuracy. Only in the shock region of the first test case a sixth order
polynomial expansion was required to estimate the statistics of pressure within the 95%
confidence intervals of the Monte Carlo results, since the shape of the distributions obtained
with 3rd order spatially accurate Euler solutions were highly non-Gaussian in this region.

I. Introduction

A deterministic computational fluid dynamics (CFD) simulation gives a single solution for a certain set
of input parameters (the geometry, free-stream flow conditions, angle of attack etc.). In real life, these
parameters are mostly uncertain and the variability associated with them can have substantial impact on
the final result. In addition to the parameter uncertainty, CFD error and uncertainties may also come
from discretization errors and mathematical modeling of the physics such as the assumptions in partial
differential equations, boundary and initial conditions, and the turbulence models. These factors can also
significantly alter the solution of a fluid dynamics problem as shown in studies by Hosder et al1 and Hemsch.2
Stochastic CFD simulations are needed to asses the uncertainty in the solution, and to achieve a certain level
of robustness or reliability in the final aerodynamic design. Development of credible stochastic aerodynamic
simulation tools require effective and efficient methods to model and propagate the input uncertainties,
and sufficient testing on various fluid dynamics problems. In this paper, we address this requirement by
the introduction and testing of an inexpensive non-intrusive polynomial chaos method developed for the
uncertainty propagation in CFD simulations.

Several methods have been used to model and propagate uncertainty in stochastic computational simu-
lations. Interval analysis, propagation of uncertainty using sensitivity derivatives, Monte Carlo simulations,
moment methods and polynomial chaos are among the main approaches implemented in CFD simulations.
Detailed description and analysis of each method for selected fluid dynamics problems can be found in Wal-
ters and Huyse.3 In this paper we focus on uncertainty propagation with the polynomial chaos (PC) method,
which is based on the spectral representation of the uncertainty. Several researchers have studied and imple-
mented the PC approach for a wide range of problems. Ghanem and Spanos4 (1990) and Ghanem5,6 (1999)
applied the PC method to several problems of interest to the structures community. Mathelin et al.7 studied
uncertainty propagation for a turbulent, compressible nozzle flow by this technique. Xiu and Karniadakis8

∗Postdoctoral Associate, Aerospace and Ocean Engineering Department, AIAA Member.
†Professor and Department Head, Aerospace and Ocean Engineering Department, AIAA Associate Fellow.
‡Graduate Student, Aerospace and Ocean Engineering Department, AIAA Student Member.

1 of 19

American Institute of Aeronautics and Astronautics

44th AIAA Aerospace Sciences Meeting and Exhibit
9 - 12 January 2006, Reno, Nevada

AIAA 2006-891

Copyright © 2006 by Serhat Hosder and Robert W. Walters. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



analyzed the flow past a circular cylinder and incompressible channel flow by the PC method and extended
the method beyond the original formulation of Wiener9 to include a variety of basis functions. In 2003, Wal-
ters10 applied the PC method to a two-dimensional steady-state heat conduction problem for representing
geometric uncertainty. Following this effort, an implicit compact PC formulation was implemented for the
stochastic Euler equations (Perez and Walters,11 2005).

The PC method for the propagation of uncertainty in computational simulations involves the substitu-
tion of uncertain variables and parameters in the governing equations with the polynomial expansions. In
general, an intrusive approach will calculate the unknown polynomial coefficients by projecting the resulting
equations onto basis functions (orthogonal polynomials) for different modes. As its name suggests, the in-
trusive approach requires the modification of the deterministic code and this may be inconvenient for many
complex computational problems since the modification of the existing code can be difficult, expensive, and
time consuming. To alleviate this inconvenience, non-intrusive methods have been investigated by many
researchers. Most of the non-intrusive PC approaches in the literature are based on sampling (Debusschere
et al.,12 Reagan et. al.,13 and Isukapalli14) or quadrature methods (Debusschere et al.12 and Mathelin et
al.15) to determine the projected polynomial coefficients.

In this paper, we present an inexpensive non-intrusive Polynomial chaos (NIPC) method for the prop-
agation of input uncertainty. Our approach is not based on sampling or quadrature methods to evaluate
the polynomial coefficients. The present method is straightforward to implement in any stochastic fluid
dynamics problem and computationally less expensive than sampling or quadrature based methods. To val-
idate the present NIPC approach, we have applied the method to three basic fluid dynamics problems: (1)
inviscid oblique shock wave problem with geometric uncertainty, (2) inviscid expansion wave problem with
geometric uncertainty, and (3) steady, subsonic, 2-D, zero-pressure gradient laminar boundary layer flow
over a flat plate, which has the free-stream dynamic viscosity as the uncertain parameter. In this paper, we
first give a brief review of the Hermite Polynomial Chaos and then describe the present method. Following
the description, we give the results of the stochastic test problems and end the paper with the conclusions
drawn from these cases.

II. Basics of Hermite Polynomial Chaos

Spectral representation of uncertainty in engineering simulations has been studied by many researchers in
recent years (See Ghanem,5,6 Ghanem and Spanos,4,16 and Xiu and Karniadakis8,17). An important aspect
of spectral representation of uncertainty is that one may decompose a random function (or variable) into
separable deterministic and stochastic components. For example, for any stochastic variable (i.e.,α ∗) such
as velocity, density or pressure with random fluctuations, we can write,

α∗(x, y, "ξ) =
P∑

i=0

αi(x, y)Ψi("ξ) (1)

where αi(x, y) is the deterministic component andΨ i("ξ) is the random basis function corresponding to the
ith mode. Here we assume α∗ to be a function of deterministic independent variables x and y, and the n-
dimensional random variable vector "ξ = (ξ1, ...,ξ n) which has a specific probability distribution. Effectively,
in Equation 1, αi(x, y) is the amplitude of the ith fluctuation. The discrete sum is taken over the number of
output modes , P + 1 = (n+p)!

n!p! , which is a function of the order of polynomial chaos (p) and the number of
random dimensions (n). For the basis function, we use multi-dimensional Hermite Polynomial to span the
n-dimensional random space, which was first used by Wiener9,18 in his original work of polynomial chaos.
Many other choices are possible for basis functions depending on the type of the probability distribution
selected for the input uncertainty (See Xiu and Karniadakis8 for a detailed description and usage of different
basis functions). A convenient form of the Hermite polynomials is given by

Hk(ξi1 , ...,ξ ik) = e
1
2

!ξT !ξ(−1)k δk

δξi1 ...δξik

(
e−

1
2

!ξT !ξ
)

(2)

where k = 0, 1, ..., p. Table 1 gives Hermite Polynomials of a one-dimensional random variable ξ up to 10
orders.
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Table 1. Hermite Polynomials of single variable ξ up to 10 orders.

k Hk(ξ)

0 1
1 ξ

2 −1 + ξ2

3 −3ξ + ξ3

4 3− 6ξ2 + ξ4

5 15ξ − 10ξ3 + ξ5

6 −15 + 45ξ2 − 15ξ4 + ξ6

7 −105ξ + 105ξ3 − 21ξ5 + ξ7

8 105− 420ξ2 + 210ξ4 − 28ξ6 + ξ8

9 945ξ − 1260ξ3 + 378ξ5 − 36ξ7 + ξ9

10 −945 + 4725ξ2 − 3150ξ4 + 630ξ6 − 45ξ8 + ξ10

The inner product of two functions f("ξ) and g("ξ) is defined by

〈
f("ξ)g("ξ)

〉
=

∫ ∞

−∞
f("ξ)g("ξ)pN ("ξ)d"ξ (3)

where the weight function pN ("ξ) is an n-dimensional Gaussian distribution with unit variance:

pN ("ξ) =
1√

(2π)n
e

1
2

!ξT !ξ. (4)

The Hermite polynomials form a complete orthogonal set of basis functions in the random space, therefore
the inner product of the basis functions is zero with respect to each other, i.e.

〈ΨiΨj〉 =
〈
Ψ2

i

〉
δij (5)

where δij is the Kronecker delta function.
The statistics of the distribution for a flow variable at a spatial location can be calculated after the

polynomial coefficients αk(x, y), (k = 0, 1, .., P ) in Equation 1 are determined. The mean of the random
solution is given by

ᾱ∗(x, y) = EPC

[
α∗(x, y, "ξ)

]
=

∞∫

−∞

α∗(x, y, "ξ)pN ("ξ)d"ξ = α0(x, y) (6)

which indicates that the zeroth mode of the expansion corresponds to the expected value or the mean of
α∗(x, y, "ξ). Similarly, the variance of the distribution can be obtained as:

V arPC

[
α∗(x, y, "ξ)

]
=

∞∫

−∞

(
α∗(x, y, "ξ)− ᾱ∗(x, y)

)2
pN ("ξ)d"ξ =

P∑

i=1

[
α2

i (x, y) < Ψ2
i >

]
. (7)

In Equation 6, we have used the fact that 〈Ψk〉 = 0 for k > 0. Moreover, it can also be shown that
k = 1, 2, ..., n modes are the Gaussian estimates of the variance and all higher modes provide non-Gaussian
interactions.

To model the uncertainty propagation in CFD or other computational simulations via polynomial chaos
with the intrusive approach, all dependent variables and random parameters (such as viscosity, coefficient
of heat conduction etc.) in the governing equations are replaced with their polynomial chaos expansions.
Taking the inner product of the equations, < ·,Ψk > (or projecting each equation onto kth basis) yield
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P + 1 times the number of deterministic equations which can be solved by the same numerical methods
applied to the original deterministic system. Although straightforward in theory, an intrusive formulation
for complex problems such as the full Navier-Stokes simulation of 3-D, viscous, turbulent flows around
realistic aerospace vehicles, chemically reacting flows, or multi-system level simulations which include the
interaction of many different codes from different disciplines can be relatively difficult, expensive, and time
consuming to implement. To overcome such inconveniences associated with the intrusive approach, some
non-intrusive polynomial chaos formulations have been developed for uncertainty propagation.

The main objective of the non-intrusive polynomial chaos methods is to obtain approximations of the
polynomial coefficients without making any modifications to the deterministic code. Two commonly used
approaches for non-intrusive polynomial chaos are sampling based and quadrature methods. To find the
polynomial coefficients αk = αk(x, y), (k = 0, 1, .., P ) in Equation 1 using these methods, the equation is
projected onto kth basis:

〈
α∗(x, y, "ξ),Ψk("ξ)

〉
=

〈
P∑

i=0

αiΨi("ξ),Ψk("ξ)

〉
(8)

By the virtue of orthogonality, 〈
α∗(x, y, "ξ),Ψk("ξ)

〉
= αk

〈
Ψ2

k("ξ)
〉

(9)

which leads to

αk =

〈
α∗(x, y, "ξ),Ψk("ξ)

〉

〈
Ψ2

k("ξ)
〉 (10)

In sampling based methods, the main strategy is to compute α∗(x, y, "ξ)Ψk("ξ) for a number of samples ("ξi

values) and perform averaging to determine the estimate of the inner product
〈
α∗(x, y, "ξ),Ψk("ξ)

〉
. Quadra-

ture methods calculate the same term, which is an integral over the support of the weight function PN ("ξ),
using Gauss-Hermite Quadrature points. Once this term is evaluated, both methods (sampling based and
quadrature) use Equation 10 to estimate the projected polynomial coefficients for each mode.

III. Description of the Present Non-Intrusive Polynomial Chaos Method

The present non-intrusive PC was first introduced by Walters10 to approximate the polynomial chaos
coefficients of the metric terms which are required as input stochastic variables for the intrusive polynomial
chaos representation of a stochastic heat transfer problem with geometric uncertainty. In 2005, Walters19
used the same approach to determine the optimum lift-to-drag ratio for a cosine-shaped airfoil as a function
of angle of attack using shock-expansion solutions to demonstrate the optimization and reconstruction via
PC. In this paper, we present the method for the propagation of input uncertainty in CFD simulations.

The present NIPC method starts with replacing the uncertain variables of interest with their polynomial
expansions given by Equation 1. Then, for a given PC of order P , we choose P+1 vectors "ξi = {ξ1, ξ2, ...,ξ n}i,
(i = 0, 1, 2, ..., P ) in random space and evaluate the deterministic code at these points. With the left hand
side of Equation (1) known from the solutions of deterministic evaluations at the chosen random points, a
linear system of equations can be obtained:





Ψ0("ξ0) Ψ1("ξ0) · · · Ψp("ξ0)

Ψ0("ξ1) Ψ1("ξ1) · · · Ψp("ξ1)
...

...
. . .

...
Ψ0("ξp) Ψ1("ξp) · · · Ψp("ξp)









α0

α1
...

αp




=





α∗("ξ0)

α∗("ξ1)
...

α∗("ξp)




(11)

The spectral modes (αk) of the random variable, α∗, are obtained by solving the linear system of equations
given above.

The method described here is non-intrusive in the sense that no modification to the deterministic code is
required in any form. In this method, the deterministic code is treated as a black box. The new non-intrusive
method is straightforward to implement, requires a single LU decomposition on a relatively small matrix,
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minimally requires P +1 deterministic evaluations to estimate statistics, and can be shown to converge to the
projected PC expansion coefficients under certain conditions. However, in general, the solution obtained by
this non-intrusive approach is not unique, since one can choose the random vectors arbitrarily to evaluate the
required deterministic solutions. Because of this fact, the present non-intrusive method should be interpreted
as a model for estimating the projected coefficients.

IV. Results

To test the performance of this NIPC approach in CFD simulations, we have chosen three basic flow
problems. These cases represent three building blocks of fluid dynamics. The first problem is inviscid,
steady, supersonic, two-dimensional flow over a wedge which has an uncertainty in the wedge angle and
represents a stochastic oblique shock wave problem. The second test case is inviscid, steady, supersonic,
two-dimensional flow over an expansion corner with an uncertainty in the corner angle and represents a
stochastic expansion wave problem. The last problem is steady, subsonic, two-dimensional, zero-pressure
gradient laminar boundary layer flow over a flat plate, which has the free-stream dynamic viscosity as the
uncertain parameter.

In all test cases we have compared the polynomial chaos results to the statistics obtained with crude
(basic) Monte Carlo simulations. In this approach we have followed the procedure described in Walters
and Huyse:3 (1) sample input random variable from its assumed probability density function, (2) compute
deterministic output for each sampled input value, and (3) determine statistics of the output distribution
such as the mean and the variance. The Monte Carlo method is known to converge to the exact stochastic
solution as the number of samples, ns →∞. However, the convergence of the mean error estimate is relatively
slow since the standard deviation of the mean scales with the square root of the number of samples,

σu =
σ
√

ns
. (12)

We could afford to perform 10,000 Monte Carlo simulations for each problem in order to increase the accuracy
in our estimation of the statistics. These Monte Carlo simulations enabled us to test the accuracy of our
non-intrusive polynomial chaos approach for the selected problems. However, performing a large number
of Monte Carlo simulations would be beyond the reach of current computational power, even with high
performance computers, for many realistic aerodynamic problems that require the solution of complex flow
fields. This fact is one of the motivations for the development of the polynomial chaos methods to model
uncertainty propagation in CFD simulations.

A. Oblique Shock Wave Problem

To analyze the stochastic oblique shock wave problem, we address inviscid, steady, two-dimensional, super-
sonic flow of a calorically perfect gas over a wedge as shown in Figure 1(a). The deterministic problem
includes the solution of the supersonic flow field for a given free stream Mach number (Mref ), specific heat
ratio (γ), and the wedge angle, θ. The output quantity of interest for this problem is the scaled static
pressure distribution in the flow field, P/Pref , where Pref is the free-stream pressure.

1. Deterministic Problem

To solve the deterministic problem, one may use the analytical oblique shock relations for a perfect gas,
which gives the pressure rise across the shock as a function of Mref , γ, and θ. In our study, we solved the
deterministic problem numerically using the CFL3D code of NASA Langley Research Center to demonstrate
the application of the present NIPC method to CFD simulations. CFL3D is a three-dimensional, finite-
volume Navier-Stokes code capable of solving steady or time-dependent aerodynamic flows ranging from
subsonic to supersonic speeds.20

We used CFL3D to solve the Euler equations which are a subset of Navier-Stokes equations and govern
the inviscid, compressible flow of a fluid. Both NIPC and Monte Carlo methods used the deterministic
solutions from Euler calculations in their implementation. The computations were performed on grids which
have 65 grid points in both x- and z-directions. Figure 1(b) shows the grid with the mean wedge angle,
θmean. The equations were integrated in time using an implicit approximate factorization scheme to reach the
steady state. A full multigrid (multigrid+mesh sequencing) method was used for convergence acceleration.
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Mref, Pref, Tref

θ

(a) Sketch of supersonic flow and the oblique shock.

0 0.25 0.5 0.75 10

0.1

0.2

0.3

0.4

0.5

x

z

(b) The mean grid (65× 65) used in Euler computations. The
mean wedge angle (θmean) is 5.0o.

Figure 1. Description of the supersonic, inviscid flow over a ramp with wedge angle θ.

The inviscid fluxes on the cell-faces were calculated using Roe flux difference splitting.21 To investigate the
effect of spatial accuracy on the stochastic problem, we calculated the primitive variable values on the cell
faces using two interpolation schemes: (1) fully upwind 1st order accurate and (2) upwind-biased 3rd order
accurate with the MinMod limiter. The MinMod limiter was used for the higher order scheme to eliminate
the non-physical oscillations in the shock region. It should be noted that the 3rd order is the nominal order
of the scheme but the observed order of accuracy would be more likely to be less than this value due to the
multi-dimensionality of the problem, shock wave (discontinuity), and the use of the limiter (See the studies
by Hosder1 and Roy22 for more on this topic). However, we will still use the nominal orders in the text
for the purpose of labelling the cases. The boundary conditions for this problem were set as follows: all
flow variables were kept fixed at their free-stream values at the in-flow boundary. The free-steam Mach
number was chosen as Mref = 3.0 and the angle of attack was set to zero degrees. For the far-field (top)
and out-flow surfaces, all flow variables were determined by first-order extrapolation from the interior cells.
A wall-tangency boundary condition was prescribed along the bottom surface.

2. Stochastic Problem

The stochastic oblique shock wave problem was formulated by introducing a geometric uncertainty through
the wedge angle (θ) that was uncertain and described by a Gaussian distribution:

θ(ξ) = θmean + ξσ. (13)

The mean wedge angle was 5◦ and the coefficient of variation was 10%. Here ξ is a normally distributed
random variable with zero mean and unit variance (ξ = N [0, 1]).

Uncertainty propagation in supersonic wedge flow has been modeled using Monte Carlo and the NIPC
methods. In Monte Carlo simulations, 10,000 grids were created using 10,000 samples from the θ(ξ) distribu-
tion. The Euler Equations were solved on each grid using the CFL3D code. It took approximately 55.4 hours
(2.3 days) to complete 10,000 Monte Carlo simulations on a Apple c© G-5 computer with dual processors. A
fourth order polynomial expansion was chosen to model the uncertainty propagation with the NIPC method.
To obtain the polynomial coefficients, five deterministic solutions were evaluated on five grids with wedge
angles that correspond to ξ1 = 0.0, ξ2 = 1.0, ξ3 = −1.0, ξ4 = 2.0, and ξ5 = −2.0. It took only 2 minutes to
complete these runs on the same computer. In addition to the fourth order polynomial chaos evaluation, a
parametric study was also performed to see the effect of the order of the polynomial chaos on the statistics
of the Euler solutions with 3rd order spatial accuracy.

It should be noted that each deterministic solution that corresponds to a specific value of θ(ξ) was obtained
on a different grid which has different cell center locations. Each deterministic solution was interpolated to
the mean grid to calculate the Monte Carlo statistics at the cell center locations of the mean grid. Similarly,
the polynomial chaos expansions for the pressure were calculated at the mean grid cell center locations using
five deterministic solutions that were obtained from the interpolation of the original θ(ξi) (i = 1, .., 5) results
to the mean grid.

The mean pressure contours of the NIPC method and the Monte Carlo simulations are shown in Figure 2.
Qualitatively, we see a good agreement between the results of the two methods when the polynomial chaos
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Figure 2. Mean pressure (P/Pref ) distributions obtained from MC simulations and NIPC expansions for the
supersonic ramp problem. Polynomial chaos results are obtained with a 4th order expansion. The three
locations showed in the PC plots designate the points where the quantitative analysis were performed.

Table 2. The mean static pressure (P/Pref ) values obtained with NIPC and Monte Carlo methods at three
selected locations for the supersonic ramp problem. The 95% confidence intervals for the mean values are
calculated for Monte Carlo simulations using the Bootstrap method.

Spatial Accuracy Location Mean PC Mean MC 95% Conf. Interval

1 1.21820 1.21821 [1.21714, 1.21934]
1st order 2 1.45411 1.45411 [1.45308, 1.45517]

3 1.45438 1.45438 [1.45335, 1.45543]
1 1.11433 1.11739 [1.11469, 1.12003]

3rd order with MinMod 2 1.45484 1.45475 [1.45372, 1.45581]
3 1.45472 1.45471 [1.45368, 1.45577]

and the Monte Carlo solutions are compared for the same spatial accuracy. The mean pressure field obtained
with the 1st order spatially accurate Euler solutions show that the static pressure increases smoothly in a
relatively wider region. As expected, the 3rd order scheme captures the shock more accurately and the
pressure jump occurs in a much smaller region. The contours of standard deviation again show a good
qualitative agreement between the Monte Carlo and the polynomial chaos results (Figure 3). The maximum
value of the standard deviation obtained from the 3rd order spatially accurate solutions is approximately 2.5
times larger than that of the 1st order results. For the higher order case, the large values of the standard
deviation are located in the shock region, especially towards the outflow boundary.
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Figure 3. Standard deviation distributions of pressure (P/Pref ) obtained from MC simulations and NIPC
expansions for the supersonic ramp problem. Polynomial chaos results are obtained with a 4th order expansion.

Table 3. The standard deviation of static pressure (P/Pref ) obtained with NIPC and Monte Carlo methods
at three selected locations for the supersonic ramp problem. The 95% confidence intervals for the standard
deviations are calculated for Monte Carlo simulations using the Bootstrap method.

Spatial Accuracy Location StD PC StD MC 95% Conf. Interval

1 0.0570991 0.057091 [0.0561843, 0.0579676]
1st order 2 0.0524008 0.0523996 [0.051638, 0.0530961]

3 0.0522568 0.0522547 [0.0514975, 0.0529443]
1 0.140332 0.137809 [0.135184, 0.140262]

3rd order with MinMod 2 0.052422 0.0523684 [0.0516112, 0.0530614]
3 0.0522727 0.0523118 [0.0515483, 0.0530093]

To analyze the statistics of the Monte Carlo and NIPC methods quantitatively, we have picked three
locations in the flow field. All three are on the same streamwise station, but they are at different distances
from the wall (Figure 2). Location 1 (x = 0.8984, z = 0.3844) is in the shock region, Location 2 (x = 0.8984,
z = 0.2325) is downstream of the shock, and Location 3 (x = 0.8984, z = 0.0772) is a point on the wall
downstream of the shock. Figure 4 shows the static pressure histograms at these locations obtained with
Monte Carlo and the NIPC methods that use 1st order spatially accurate deterministic Euler solutions. At
all locations, the histograms of the polynomial chaos method are essentially the same as the ones obtained
with the Monte Carlo simulations. The distribution at location 1 (shock region) is slightly skewed to the
right, whereas the histograms at locations 2 and 3 follow the Gaussian distribution closely. The mean and
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Figure 4. Static pressure histograms obtained at three locations for the supersonic ramp problem using MC
and NIPC methods. The deterministic Euler solutions are calculated using 1st order accurate upwind-biased
Roe flux difference splitting. Polynomial chaos results are obtained from a 4th order expansion.
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Figure 5. Static pressure histograms obtained at three locations for the supersonic ramp problem using MC
and NIPC methods. The deterministic Euler solutions are calculated using 3rd order accurate upwind-biased
Roe flux difference splitting with the MinMod limiter. Polynomial chaos results are obtained from a 4th order
expansion.

the standard deviation values of these distributions are given in Tables 2 and 3. For each statistical quantity
obtained with the Monte Carlo Simulations, a 95% confidence interval is also presented. We use the bootstrap
method to compute the confidence intervals as well as the standard error estimate of each statistical quantity.
The advantage of this method is that it is not restricted to a specific distribution, e.g. a Gaussian. It is
easy and efficient to implement and can be completely automated to any estimator, such as the mean or
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Figure 6. The contours showing the difference (|StdMC−StdPC |) between the static pressure standard deviation
values obtained using MC and NIPC methods for the supersonic ramp problem. The deterministic Euler
solutions are calculated using 3rd order accurate upwind-biased Roe flux difference splitting with the MinMod
limiter for the selected θξ values.

the variance. In practice, one takes 25–200 bootstrap samples to obtain a standard error estimate. In
our computations, we used 500 bootstrap samples. Note that each sample consisted of 10,000 observations
selected randomly from the original Monte Carlo simulations by giving equal probability (1/10, 000) to each
observation. All mean and standard deviation values obtained with the NIPC method fall within the 95%
confidence interval for 1st order spatially accurate solutions. Figure 5 gives the histograms for the 3rd order
accurate Euler solutions. At location 1 where there is large pressure gradient due to the shock (Figure 2),
the histograms are highly non-Gaussian and one sided. They are skewed to the right with a large tail region.
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Figure 7. The change in P/Pref standard deviation values with the order of the polynomial expansions at
locations 1 and 2. The deterministic Euler solutions are calculated using 3rd order accurate upwind-biased
Roe flux difference splitting with the MinMod limiter.

The histogram obtained with the 4th order polynomial chaos method falls short in approximating the limit
of the tail region which extends further right for the Monte Carlo distribution. The mean and the standard
deviation of the polynomial chaos distribution fails to fall within the 95% confidence interval (Tables 2
and 3). Other two stations downstream of the shock again follow closely the normal distribution and the
agreement between the Monte Carlo and polynomial chaos results is good. At locations 2 and 3, both mean
and standard deviation values obtained with the NIPC method fall within the 95% confidence intervals.

To see the effect of the order of the polynomial chaos on the statistics, we have performed the NIPC
analysis with different orders ranging from one to six. The deterministic Euler solutions with 3rd order
spatial accuracy were used to calculate the polynomial coefficients. Figure 6 shows the contours of pressure
standard deviation difference between the results of Monte Carlo simulations and the NIPC method. For
the 1st order PC, the standard deviation values in the shock region are significantly different than those
obtained with Monte Carlo simulations. Downstream of the shock, the difference is very small implying
that the probability distributions of pressure in this region are Gaussian. A sixth order expansion seems to
approximate the standard deviation well in the whole flow field, which proves that the pressure distributions
across the shock region require sufficiently high order expansions to model the non-Gaussian contributions.
One interesting observation from this figure is on the selection of the random vector. Despite the increase in
order, if the additional random point is chosen from the positive side of the mean pressure (positive ξ values),
the accuracy in the approximation of the standard deviation does not seem to improve as much as the case
where the additional sampling point is chosen from the negative side of the mean. This observation suggests
the importance of picking the optimum random vector for the efficiency of modeling the non-Gaussian output
distributions with the current NIPC method.

To quantify the convergence of the standard deviation obtained with the NIPC method, we analyze
the results at locations 1 (shock region) and 2 (downstream of the shock). Figure 7 shows the standard
deviation of pressure obtained with different orders of polynomial expansions. For each location, Monte
Carlo estimation of the standard deviation and the associated confidence interval is also presented. At
location 2, standard deviation values obtained with all orders fall within the 95% confidence interval. Since
the pressure distribution at this location is Gaussian (Figure 5), a first order expansion is sufficient to
approximate the statistics. For location 1 which has a highly non-Gaussian and one-sided distribution due
to the shock, only the standard deviation obtained with a sixth order polynomial expansion falls within the
95% confidence interval. With the increase of the order, standard deviation values converge monotonically
to the Monte Carlo result except the fifth order case, which is obtained with solutions evaluated at random
points, ξ = {0, 1,−1, 2,−2, 3}. A much better approximation is achieved by replacing the deterministic
solution evaluated at ξ = 3 with the one obtained at ξ = −3, which corresponds to a wedge angle of
θ = 3.5o. This observation re-emphasizes the importance of selecting the optimum random points for the
evaluation of the coefficients of high order polynomial expansions when modeling non-Gaussian distributions.
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The following equations give the sixth order polynomial chaos expansions of pressure scaled with the
zeroth mode, a0 (mean) at locations 1 and 2:

(
P/Pref (ξ)

a0

)

1

= 1.0 + 0.124017ξ + 0.0896966ξ2 − 0.00174726ξ3

−0.0148230ξ4 − 0.000100914ξ5 + 0.000878693ξ6

(
P/Pref (ξ)

a0

)

2

= 1.0 + 0.0362645ξ + 0.000503941ξ2 − 0.0000884384ξ3

−0.0000204613ξ4 + 7.11273× 10−6ξ5 + 2.08695× 10−6ξ6

At location 2, the contribution of second order or higher terms to the pressure distribution is small compared
to the first two modes. For location 1, higher order terms of the expansion are significant due to the non-
Gaussian nature of the pressure distribution.

B. Supersonic Expansion Wave Problem

1

Stochastic CFD Simulations of Supersonic Flow 
Over a Ramp and Expansion Corner  

• Steady, inviscid, supersonic flow with M8=3.0

Mref, Pref, Tref

θ

θ

• For both cases deflection angle θ is modeled as a normally 
distributed uncertain parameter with  θmean=5 deg, and CoV =10%

• Stochastic methods used to propagate the uncertainty:
• Monte Carlo (MC) simulations with 1000 samples
• 4th degree Polynomial Chaos (PC)

• 5 Deterministic solutions obtained at ξ=0, 1, -1, 2, and -2 
where ξ=(θ-mean)/std

• CFD Simulations performed with CFL3D using
• 1st order Roe’s flux difference splitting

Mref, Pref, Tref

(a) Sketch of supersonic flow and the expansion wave.
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Figure 8. Description of the supersonic, inviscid flow over a convex corner with a turn angle of θ.

To analyze the stochastic expansion wave problem, we consider inviscid, steady, two-dimensional, super-
sonic flow of a calorically perfect gas over a convex corner. Under these conditions, a centered expansion fan
originates from the sharp convex corner as shown in Figure 8(a). The static pressure, which is the output
quantity of interest also for this problem, decreases continuously across the expansion fan and remains con-
stant in the region downstream of the rearward Mach line. The deterministic problem involves the solution
of the supersonic flow field for a given free stream Mach number (Mref ), specific heat ratio (γ), and the
deflection angle (θ).

1. Deterministic Problem

To solve the deterministic problem, one may use the Prandtl-Meyer relations to calculate the Mach num-
ber at any increment of deflection angle across the expansion fan. Once the Mach number is known, the
pressure drop (P/Pref ) can be calculated using the isentropic relations for a perfect gas. The details of the
Prandtl-Meyer solution can be found in Anderson.23 As in the oblique shock wave problem, we solved the
deterministic problem numerically with the CFL3D code. Both NIPC and Monte Carlo methods used the
deterministic solutions from Euler calculations in their implementation. The computations were performed
on grids which have 65 grid points in both x- and z-directions. Figure 8(b) shows the grid with the mean
deflection angle. The same boundary conditions, time integration scheme, and multigrid methods described
for the oblique shock wave case were used in this problem to find the steady-state solutions. The free-steam
Mach number was chosen as Mref = 3.0 and the angle of attack was set to zero degrees. The inviscid fluxes
on the cell-faces were again calculated using Roe flux difference splitting and the primitive variables on the
cell faces were obtained using (1) a fully upwind 1st order accurate interpolation, and (2) an upwind-biased
3rd order accurate scheme with the MinMod limiter.
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Figure 9. Mean pressure (P/Pref ) distributions obtained from MC simulations and NIPC method for the
supersonic expansion problem. Polynomial chaos results are obtained with a 4th order expansion. The three
locations showed in the polynomial chaos plots designate the points where the quantitative analysis were
performed.

Table 4. The mean static pressure (P/Pref ) values obtained with NIPC and Monte Carlo methods at three
selected locations for the expansion wave problem. The 95% confidence intervals for the mean values are
calculated for Monte Carlo simulations using the Bootstrap method.

Spatial Accuracy Location Mean PC Mean MC 95% Conf. Interval

1 0.756032 0.756048 [0.755834, 0.756276]
1st order 2 0.668288 0.66829 [0.667744, 0.668849]

3 0.668108 0.668108 [0.667558, 0.66867]
1 0.697085 0.697122 [0.696907, 0.697336]

3rd order with MinMod 2 0.668056 0.668065 [0.667515, 0.668629]
3 0.668071 0.66807 [0.667519, 0.668633]

2. Stochastic Problem

Similar to the oblique shock wave example, the expansion wave problem was formulated by introducing a
geometric uncertainty through the deflection angle (θ(ξ)) that was described by a Gaussian distribution
with a coefficient of variation of 10%. The mean deflection angle was chosen as θmean = 5o. Uncertainty
propagation in supersonic expansion flow has been modeled using Monte Carlo and the non-intrusive poly-
nomial chaos methods. In Monte Carlo simulations, 10,000 grids were created using 10,000 samples from the
θ(ξ) distribution. The Euler Equations were solved on each grid using the CFL3D code. The uncertainty
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Figure 10. Standard deviation distributions of pressure (P/Pref ) obtained from MC simulations and NIPC
method for the supersonic expansion problem. Polynomial chaos results are obtained with a 4th order expan-
sion.

Table 5. The standard deviation of static pressure (P/Pref ) obtained with NIPC and Monte Carlo methods
at three selected locations for the expansion wave problem. The 95% confidence intervals for the standard
deviations are calculated for Monte Carlo simulations using the Bootstrap method.

Spatial Accuracy Location StD PC StD MC 95% Conf. Interval

1 0.0114565 0.0114636 [0.01128, 0.0116386]
1st order 2 0.027846 0.0278475 [0.0274421, 0.028226]

3 0.0280006 0.0280007 [0.0275924, 0.0283773]
1 0.0107491 0.010747 [0.010482, 0.0110103]

3rd order with MinMod 2 0.0280358 0.0280317 [0.0276231, 0.0284082]
3 0.0280277 0.028026 [0.0276174, 0.0284027]

propagation with the non-intrusive polynomial chaos method was modeled with a fourth order polynomial
chaos expansion. To obtain the polynomial coefficients, five deterministic solutions were evaluated on five
grids with deflection angles that correspond to ξ1 = 0.0, ξ2 = 1.0, ξ3 = −1.0, ξ4 = 2.0, and ξ5 = −2.0.

Figure 9 gives the mean pressure contours of the NIPC method and the Monte Carlo simulations. For
the same spatial accuracy, the qualitative agreement between the results of the two methods is good. Across
the expansion wave, all cases show a smooth mean pressure drop, however the expansion wave is wider for
the cases with 1st order spatial accuracy. The contours of standard deviation again show a good qualitative
agreement between the Monte Carlo and the polynomial chaos results (Figure 10). The standard deviation
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Figure 11. Static pressure histograms obtained at three locations for the supersonic expansion wave problem
using MC and NIPC methods. The deterministic Euler solutions are calculated using 1st order accurate
upwind-biased Roe flux difference splitting. Polynomial chaos results are obtained from a 4th order expansion.
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Figure 12. Static pressure histograms obtained at three locations for the supersonic expansion wave problem
using MC and NIPC methods. The deterministic Euler solutions are calculated using 3rd order accurate
upwind-biased Roe flux difference splitting with MinMod limiter. Polynomial chaos results are obtained from
a 4th order expansion.

increases smoothly across the expansion wave for all cases. This change occurs again in a wider region for
the 1st order spatially accurate solutions.

As in the oblique shock wave problem, we picked three locations in the flow field to compare the statistics
of the Monte Carlo and NIPC methods quantitatively. Again these points are on the same streamwise
station, but they are at different distances from the wall (Figure 9). Location 1 (x = 0.8984, z = 0.1978) is
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in the expansion fan towards the rearward Mach line, Location 2 (x = 0.8984, z = 0.0445) is downstream
of the expansion fan, and Location 3 (x = 0.8984, z = −0.0772) is a point on the wall downstream of
the expansion fan. The static pressure histograms at these locations are shown in Figure 11 for the 1st

order spatially accurate deterministic Euler solutions. At all locations, the histograms of the non-intrusive
polynomial chaos method are in good agreement with the ones obtained with the Monte Carlo simulations.
The distribution at location 1 (expansion fan) is slightly skewed to the right, whereas the histograms at
locations 2 and 3 follow the Gaussian distribution closely. For all three locations, the mean and standard
deviation values obtained with the NIPC method fall within the 95% confidence intervals that were calculated
for the statistics of Monte Carlo simulations using the bootstrap method (Tables 4 and 5). For the 3rd order
spatially accurate solutions, the pressure distribution at location 1 is non-Gaussian and skewed to the right
with a significant tail (Figure 12). The NIPC can accurately approximate the shape of the histogram at this
location and both statistics fall within the corresponding 95% confidence intervals. These results indicate
that a 4th order polynomial expansion is sufficient to model the non-Gaussian contributions observed at this
region of the flow. The pressure histograms at the other stations again follow a normal distribution and
the results of the Monte Carlo and the non-intrusive polynomial chaos methods are in very good agreement.
Table 5 shows that the standard deviation at location 1 is approximately 2.5 times less than the ones obtained
at locations 2 and 3 for both orders of spatial accuracy. These results can also be detected visually from the
histogram plots.

C. Laminar Boundary Layer Flow over a Flat Plate

1

Problem DefinitionLaminar Boundary Layer (BL) Flow over a Flat Plate

y

x (Remean=2×105)

x=0 
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Parameter with Uncertainty = Dynamic Viscosity of freestream, µ∞
Modeled as a normally distributed stochastic parameter with a 
coefficient of variation (CoV) of 2%

Uncertainty propagation in results obtained with
1. Monte Carlo (MC) Simulation

•10,000 samples from 
µ∞ population
• Used incompressible 
Blasius Solution to get 
results (output) for 
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2. Black Box (Non-Intrusive) 
Polynomial Chaos (PC)

• 4th degree polynomial   
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Figure 13. Description of the stochastic laminar bound-
ary layer problem which has an input uncertainty in the
dynamic viscosity of the free-stream.

To analyze the stochastic laminar boundary layer
problem, we consider a steady, subsonic, two-
dimensional, zero-pressure gradient flow over a flat
plate (Figure 13). The Reynolds number obtained
with the mean value of the dynamic viscosity is
Remean = 2 × 105 at x = 0.7375, which indicates
that the boundary layer is laminar. Mach number
of the free-stream flow is M∞ = 0.3. The velocity
profile (u/U∞), boundary layer thickness (δ), dis-
placement thickness (δ∗), and the momentum thick-
ness (θ) at x = 0.7375 are the quantities of interest
for this problem.

1. Deterministic Problem

1

Problem Definition
Laminar Boundary Layer (BL) Flow over a Flat Plate

y

x

Analyze results at 
x=0.7375 m 
(Remean=2×105)

x=0 

M∞=0.3

Parameter with Uncertainty = Dynamic Viscosity of freestream, µ∞
Modeled as a normally distributed stochastic parameter with a 
coefficient of variation (CoV) of 2%

Uncertainty propagation in results obtained with
1. Monte Carlo (MC) Simulation

•10,000 samples from 
µ∞population
• Used incompressible 
Blasius Solution to get 
results (output) for 
each sample 

2. Black Box (Non-Intrusive) 
Polynomial Chaos (PC)

• 4th degree polynomial   
• 5 Deterministic solutions 
obtained from a TLNS code 
for  
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ξ=0, 1, -1, 2, and -2
where ξ=(µ∞-mean)/std
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Figure 14. Histogram showing the uncertainty in the
free-stream dynamic viscosity which is modelled as a
normally distributed stochastic parameter with a coef-
ficient of variation (CoV ) of 2%.

The deterministic solution to an incompressible lam-
inar boundary layer flow with zero pressure gradi-
ent can be obtained with the Blasius solution. The
details of this approach can be found in White.24
In our study, we used the Blasius solution both for
NIPC method and Monte Carlo simulations.

2. Stochastic Problem

The stochastic laminar boundary layer flow prob-
lem is formulated by modeling the dynamic viscos-
ity of the free-stream (µ∞) as a normally distributed
stochastic parameter with a coefficient of variation
of 2%. The rest of the free-stream flow properties
(the density, velocity, and the pressure) were treated
as deterministic parameters and kept constant for all
the simulations. The histogram of the free-stream
dynamic viscosity is shown in Figure 14, which was
created with 10,000 random samples from the nor-
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mal population represented by

µ∞(ξ) = µ∞ + ξσ. (14)

Here µ∞ is the mean value of the free-stream dynamic viscosity, σ is the standard deviation, and ξ is
again a normally distributed random variable with zero mean and unit variance.

The uncertainty propagation in the laminar boundary layer problem was modeled with two different
methods: Monte Carlo and the NIPC. A total number of 10,000 Monte Carlo simulations were performed
to get the statistics of the uncertainty in different output quantities. Each realization was obtained by ap-
plying the Blasius solution to the problem for each dynamic viscosity sample. A fourth order polynomial
chaos expansion was chosen to model the stochastic variables in the NIPC method. To calculate the poly-
nomial coefficients, five deterministic Blasius solutions were obtained for five dynamic viscosity values which
correspond to the random variables at ξ1 = 0.0, ξ2 = 1.0, ξ3 = −1.0, ξ4 = 2.0, and ξ5 = −2.0 .
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Figure 15. Standard deviation of u/U∞ at x = 0.7375 m.

The statistics (mean and standard deviation) of
different output variables obtained from the NIPC
method and Monte Carlo simulations are compared
at x = 0.7375. Figure 15 shows the standard devi-
ation of u/U∞ through the boundary layer at this
station. Here, u is the velocity component in x-
direction and U∞ is the free-stream velocity. The
standard deviation profile of u/U∞ and the his-
tograms of the boundary layer quantities (Figure 16)
at x=0.7375 show nearly perfect agreement between
Monte Carlo and non-intrusive PC results. The nu-
merical comparison of the boundary layer statistics
are given in Table 6. Both mean and standard devia-
tion of all boundary layer quantities are the same up
to five significant digits. All boundary layer quanti-
ties exhibit a normal distribution with a coefficient
of variation of approximately 1%. It should be noted
that polynomial chaos expansions required five deterministic calculations and the solution of one linear prob-
lem for five unknown coefficients, whereas Monte Carlo Simulations required 10,000 deterministic runs.

The coefficients of polynomial chaos expansions obtained for each boundary layer quantity at x = 0.7375
are given in Table 7. The coefficients of the 2nd order terms (a2) are approximately three orders of magnitude
less than those obtained for the 1st order terms (a1). For the higher order terms, the coefficients decrease
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Figure 16. Histograms of the boundary layer quantities at x = 0.7375 obtained with the NIPC method (Blasius
solution) and with the Monte Carlo simulations (Blasius solution).
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Table 6. Statistics of the boundary layer quantities at x = 0.7375.

Boundary Layer Thickness Displacement Thickness Momentum Thickness

Statistics PC MC PC MC PC MC

Mean×103 (m) 8.09683 8.09681 2.82954 2.82954 1.08712 1.08712
STD×105 (m) 8.08945 8.08933 2.82695 2.82696 1.08612 1.08612

CoV×102 0.99909 0.99908 0.99908 0.99909 0.99908 0.99908

Table 7. The coefficients of polynomial chaos expansions (· · · = a0 + a1ξ + a2ξ2 + a3ξ3 + a4ξ4) obtained for each
boundary layer quantity at x = 0.7375.

Boundary Layer δ(ξ) (m) δ∗(ξ) (m) θ(ξ) (m)
Quantity (δ(ξ)/a0) (δ∗(ξ)/a0) (θ(ξ)/a0)

a0 8.09731× 10−3 2.82971× 10−3 1.08718× 10−3

(a0/a0) (1.0) (1.0) (1.0)
a1 8.09731× 10−5 2.82969× 10−5 1.08717× 10−5

(a1/a0) (10−2) (9.99993× 10−3) (9.99991× 10−3)
a2 −4.04865× 10−7 −1.41295× 10−7 −5.47285× 10−8

(a2/a0) (−4.99999× 10−5) (−4.99327× 10−5) (−5.033987× 10−5)
a3 4.05220× 10−9 1.44526× 10−9 5.80316× 10−10

(a3/a0) (5.00438× 10−7) (5.10745× 10−7) (5.33781× 10−7)
a4 5.06614× 10−11 −5.40440× 10−11 7.12134× 10−11

(a4/a0) (6.25657× 10−9) (−1.90988× 10−8) (6.55028× 10−8)

by approximately two orders of magnitude per degree. This is an expected result, since all boundary layer
quantities at this station exhibit a Gaussian distribution (Figure 16).

The results of this test case indicate that non-intrusive polynomial chaos method can accurately model
the propagation of an input uncertainty and accurately predict the statistics of an output variable for this
laminar boundary layer flow problem.

V. Conclusions

An inexpensive NIPC method for the propagation of input uncertainty in CFD simulations has been
presented. The method described here is non-intrusive in the sense that no modification to the deterministic
code is required. The present method is straightforward to implement for any stochastic fluid dynamics
problem and computationally less expensive than sampling or quadrature based non-intrusive methods.

To test the performance of this NIPC approach, the method has been applied to three stochastic fluid dy-
namics problems: (1) inviscid oblique shock wave problem with geometric uncertainty, (2) inviscid supersonic
expansion wave problem with geometric uncertainty, and (3) steady, subsonic, 2-D, zero-pressure gradient
laminar boundary layer flow over a flat plate, which has the free-stream dynamic viscosity as the uncertain
parameter. For each test case, the polynomial chaos results were compared to the statistics obtained with
the Monte Carlo simulations.

The results of the stochastic test cases showed the efficiency and the accuracy of the present NIPC
method in uncertainty propagation. For all three stochastic test problems, the statistics (mean and the
standard deviation) obtained with the NIPC method were in good agreement with the results of the Monte
Carlo simulations. In the oblique shock wave case, the shape of static pressure distributions obtained with
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3rd order spatially accurate Euler solutions were highly non-Gaussian in the shock region, and a sixth
order polynomial expansion was required to estimate the statistic within the 95% confidence intervals of
the Monte Carlo results. For other regions, a fourth order polynomial chaos expansion was sufficient to
obtain the statistics with the desired accuracy. The stochastic study on the shock region also suggested the
importance of selecting the optimum random vector for the efficiency of modeling the non-Gaussian output
distributions with the current NIPC method. In the expansion wave and the boundary layer problem, the
polynomial chaos statistics obtained with a fourth order expansion were in good agreement with the Monte
Carlo results.

The future work will include the investigation of adaptive sampling techniques for efficient calculation of
polynomial chaos coefficients that are important to the response of interest. Future plans also include the
application of the current method to large scale aerospace problems and the exploration of robust and risk
based design using non-intrusive polynomial chaos methods.
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