463 research outputs found

    S3 x Z2 model for neutrino mass matrices

    Full text link
    We propose a model for lepton mass matrices based on the seesaw mechanism, a complex scalar gauge singlet and a horizontal symmetry S_3 \times \mathbbm{Z}_2. In a suitable weak basis, the charged-lepton mass matrix and the neutrino Dirac mass matrix are diagonal, but the vacuum expectation value of the scalar gauge singlet renders the Majorana mass matrix of the right-handed neutrinos non-diagonal, thereby generating lepton mixing. When the symmetry S3S_3 is not broken in the scalar potential, the effective light-neutrino Majorana mass matrix enjoys μ\mu--τ\tau interchange symmetry, thus predicting maximal atmospheric neutrino mixing together with Ue3=0U_{e3} = 0. A partial and less predictive form of μ\mu--τ\tau interchange symmetry is obtained when the symmetry S3S_3 is softly broken in the scalar potential. Enlarging the symmetry group S_3 \times \mathbbm{Z}_2 by an additional discrete electron-number symmetry \mathbbm{Z}_2^{(e)}, a more predicitive model is obtained, which is in practice indistinguishable from a previous one based on the group D4D_4.Comment: 13 pages, 3 figures, final version for publication in JHE

    Derivative corrections to the Born-Infeld action through beta-function calculations in N=2 boundary superspace

    Full text link
    We calculate the beta-functions for an open string sigma-model in the presence of a U(1) background. Passing to N=2 boundary superspace, in which the background is fully characterized by a scalar potential, significantly facilitates the calculation. Performing the calculation through three loops yields the equations of motion up to five derivatives on the fieldstrengths, which upon integration gives the bosonic sector of the effective action for a single D-brane in trivial bulk background fields through four derivatives and to all orders in alpha'. Finally, the present calculation shows that demanding ultra-violet finiteness of the non-linear sigma-model can be reformulated as the requirement that the background is a deformed stable holomorphic U(1) bundle.Comment: 25 pages, numerous figure

    A model realizing the Harrison-Perkins-Scott lepton mixing matrix

    Full text link
    We present a supersymmetric model in which the lepton mixing matrix UU obeys, at the seesaw scale, the Harrison--Perkins--Scott \textit{Ansatz}--vanishing Ue3U_{e3}, maximal atmospheric neutrino mixing, and sin2θ=1/3\sin^2{\theta_\odot} = 1/3 (θ\theta_\odot is the solar mixing angle). The model features a permutation symmetry S3S_3 among the three lepton multiplets of each type--left-handed doublets, right-handed charged leptons, and right-handed neutrinos--and among three Higgs doublets and three zero-hypercharge scalar singlets; a fourth right-handed neutrino, a fourth Higgs doublet, and a fourth scalar singlet are invariant under S3S_3. In addition, the model has seven \mathbbm{Z}_2 symmetries, out of which six do not commute with S3S_3. Supersymmetry is needed in order to eliminate some quartic terms from the scalar potential, quartic terms which would make impossible to obtain the required vacuum expectation values of the three Higgs doublets and three scalar singlets. The Yukawa couplings to the charged leptons are flavour diagonal, so that flavour-changing neutral Yukawa interactions only arise at loop level.Comment: 16 pages, plain LaTeX, no figures; some clarifying remarks in the conclusions and references added, version accepted for publication in JHE
    corecore