1,104 research outputs found
Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids
The viscosity of glass-forming liquids increases by many orders of magnitude
if their temperature is lowered by a mere factor of 2-3 [1,2]. Recent studies
suggest that this widespread phenomenon is accompanied by spatially
heterogeneous dynamics [3,4], and a growing dynamic correlation length
quantifying the extent of correlated particle motion [5-7]. Here we use a novel
numerical method to detect and quantify spatial correlations which reveal a
surprising non-monotonic temperature evolution of spatial dynamical
correlations, accompanied by a second length scale that grows monotonically and
has a very different nature. Our results directly unveil a dramatic qualitative
change in atomic motions near the mode-coupling crossover temperature [8] which
involves no fitting or indirect theoretical interpretation. Our results impose
severe new constraints on the theoretical description of the glass transition,
and open several research perspectives, in particular for experiments, to
confirm and quantify our observations in real materials.Comment: 7 page
Recommended from our members
CO(1-0) in z gtrsim 4 Quasar Host Galaxies: No Evidence for Extended Molecular Gas Reservoirs
We present 12CO(J = 1 → 0) observations of the high-redshift quasi-stellar objects (QSOs) BR 1202-0725 (z = 4.69), PSS J2322+1944 (z = 4.12), and APM 08279+5255 (z = 3.91) using the NRAO Green Bank Telescope (GBT) and the MPIfR Effelsberg 100 m telescope. We detect, for the first time, the CO ground-level transition in BR 1202-0725. For PSS J2322+1944 and APM 08279+5255, our observations result in line fluxes that are consistent with previous NRAO Very Large Array (VLA) observations, but they reveal the full line profiles. We report a typical lensing-corrected velocity-integrated intrinsic 12CO(J = 1 → 0) line luminosity of L = 5 × 1010 K km s-1 pc2 and a typical total H2 mass of M(H2) = 4 × 1010 M for the sources in our sample. The CO/FIR luminosity ratios of these high-z sources follow the same trend as seen for low-z galaxies, leading to a combined solution of log LFIR = (1.39 ± 0.05) log LCO - 1.76. It has previously been suggested that the molecular gas reservoirs in some quasar host galaxies may exhibit luminous, extended 12 CO(J = 1 → 0) components that are not observed in the higher J CO transitions. Using the line profiles and the total intensities of our observations and large velocity gradient (LVG) models based on previous results for higher J CO transitions, we derive that emission from all CO transitions is described well by a single gas component in which all molecular gas is concentrated in a compact nuclear region. Thus, our observations and models show no indication of a luminous extended, low surface brightness molecular gas component in any of the high-redshift QSOs in our sample. If such extended components exist, their contribution to the overall luminosity is limited to at most 30%
New evidence for a massive black hole at the centre of the quiescent galaxy M32
Massive black holes are thought to reside at the centres of many galaxies,
where they power quasars and active galactic nuclei. But most galaxies are
quiescent, indicating that any central massive black hole present will be
starved of fuel and therefore detectable only through its gravitational
influence on the motions of the surrounding stars. M32 is a nearby, quiescent
elliptical galaxy in which the presence of a black hole has been suspected;
however, the limited resolution of the observational data and the restricted
classes of models used to interpret this data have made it difficult to rule
out alternative explanations, such as models with an anisotropic stellar
velocity distribution and no dark mass or models with a central concentration
of dark objects (for example, stellar remnants or brown dwarfs). Here we
present high-resolution optical HST spectra of M32, which show that the stellar
velocities near the centre of this galaxy exceed those inferred from previous
ground-based observations. We use a range of general dynamical models to
determine a central dark mass concentration of (3.4 +/- 1.6) x 10^6 solar
masses, contained within a region only 0.3 pc across. This leaves a massive
black hole as the most plausible explanation of the data, thereby strengthening
the view that such black holes exist even in quiescent galaxies.Comment: 8 pages, LaTeX, 3 figures; mpeg animation of the stellar motions in
M32 available at http://oposite.stsci.edu/pubinfo/Anim.htm
Early star-forming galaxies and the reionization of the Universe
Star forming galaxies represent a valuable tracer of cosmic history. Recent
observational progress with Hubble Space Telescope has led to the discovery and
study of the earliest-known galaxies corresponding to a period when the
Universe was only ~800 million years old. Intense ultraviolet radiation from
these early galaxies probably induced a major event in cosmic history: the
reionization of intergalactic hydrogen. New techniques are being developed to
understand the properties of these most distant galaxies and determine their
influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted
version of the review formatted by the authors, in accordance with Nature
publication policies. For the official, published version of the review,
please see http://www.nature.com/nature/archive/index.htm
Imaging the 2013 explosive crater excavation and new dome formation at Volcán de Colima with TerraSAR-X, time-lapse cameras and modelling
The summit region of steep volcanoes hosting lava domes often displays rapid geomorphologic and structural changes, which are important for monitoring the source region of hazards. Explosive crater excavation is often followed by new lava-dome growth, which is one of the most dynamic morphometric changes that may occur at volcanoes. However, details of these crater formations, and the ensuing new dome growth remain poorly studied. A common problem is the lack of observational data due to hazardous field access and the limited resolution of satellite remote sensing techniques. This paper describes the destructive-constructive crater activity at Volcán de Colima, Mexico, which occurred between January and March 2013. The crater geometry and early dome formation were observed through a combination of high-resolution TerraSAR-X spotmode satellite radar images and permanently installed monitoring cameras. This combined time-lapse imagery was used to identify ring-shaped gas emissions prior to the explosion and to distinguish between the sequential explosion and crater excavation stages, which were followed by dome growth. By means of particle image velocimetry, the digital flow field is computed from consecutive camera images, showing that vertical dome growth is dominant at the beginning. The upward growth is found to grade into spreading and a lateral growth domain. After approximately two months of gradually filling the excavated craters with new magma, the dome overflows the western margin of the crater and develops into a flow that produces block and ash flow hazards. We discuss and compare the observations to discrete element models, allowing us to mimic the vertical and lateral growth history of the dome and to estimate the maximum strength of the bulk rock mass. Moreover, our results allow a discussion on the controls of a critical dome height that may be reached prior to its gravitational spreading
Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland
Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations
Neurologic adverse events associated with smallpox vaccination in the United States – response and comment on reporting of headaches as adverse events after smallpox vaccination among military and civilian personnel
BACKGROUND: Accurate reporting of adverse events occurring after vaccination is an important component of determining risk-benefit ratios for vaccinations. Controversy has developed over alleged underreporting of adverse events within U.S. military samples. This report examines the accuracy of adverse event rates recently published for headaches, and examines the issue of underreporting of headaches as a function of civilian or military sources and as a function of passive versus active surveillance. METHODS: A report by Sejvar et al was examined closely for accuracy with respect to the reporting of neurologic adverse events associated with smallpox vaccination in the United States. Rates for headaches were reported by several scholarly sources, in addition to Sejvar et al, permitting a comparison of reporting rates as a function of source and type of surveillance. RESULTS: Several major errors or omissions were identified in Sejvar et al. The count of civilian subjects vaccinated and the totals of both civilians and military personnel vaccinated were reported incorrectly by Sejvar et al. Counts of headaches reported in VAERS were lower (n = 95) for Sejvar et al than for Casey et al (n = 111) even though the former allegedly used 665,000 subjects while the latter used fewer than 40,000 subjects, with both using approximately the same civilian sources. Consequently, rates of nearly 20 neurologic adverse events reported by Sejvar et al were also incorrectly calculated. Underreporting of headaches after smallpox vaccination appears to increase for military samples and for passive adverse event reporting systems. CONCLUSION: Until revised or corrected, the rates of neurologic adverse events after smallpox vaccinated reported by Sejvar et al must be deemed invalid. The concept of determining overall rates of adverse events by combining small civilian samples with large military samples appears to be invalid. Reports of headaches as adverse events after smallpox vaccination appear to be have occurred much less frequently using passive surveillance systems and by members of the U.S. military compared to civilians, especially those employed in healthcare occupations. Such concerns impact risk-benefit ratios associated with vaccines and weigh against making vaccinations mandatory, without informed consent, even among military members. Because of the issues raised here, adverse event rates derived solely or primarily from U.S. Department of Defense reporting systems, especially passive surveillance systems, should not be used, given better alternatives, for making public health policy decisions
- …