4,036 research outputs found

    Theory of fission-mass distributions demonstrated for 226Ra, 236U, 258Fm

    Get PDF
    With the mass asymmetry described by the dynamical collective fragmentation coordinate ξ, and with use of the asymmetric two-center shell model, the fission mass distributions for 226Ra, 236U, and 258Fm (which are typical representatives for triple-, double-, and single-humped distributions) are explained

    Collective effects on mass asymmetry in fission

    Get PDF
    the development of the mass asymmetry vibrations in the final stages of the fission process is studied with an approximate treatment of the coupling to relative motion. A parametrized friction is introduced and its effects are studied. Numerical results are presented for 236U, together with estimates for the kinetic energy of the fragments. RADIOACTIVITY, FISSION 236U; calculated mass distribution, kinetic energy distribution. Collective dynamics, shell correction method, cranking model

    Spin polarization of electrons induced by strong collisional magnetic fields

    Get PDF
    We calculate the spin polarization of 1sσ vacancies and emitted δ electrons induced by the strong magnetic field (|Bmax|∼1016G) in collisions of very heavy ions (Z1+Z2=178). The electron excitations are determined by the solution of coupled-channel equations within the quasimolecular basis states including the vector potential. The formulation is extended to the many-electron case. Spin polarizations of the order of 5-10% for impact energies below the Coulomb barrier are predicted

    Comment on "New atomic mechanism for positron production in heavy-ion collisoins"

    Get PDF
    A Comment on the Letter by W. Lichten and A. Robatino, Phys. Rev. Lett. 54, 781 (1985). See Also: W. Lichten and A. Robatino, New atomic mechanism for positron production in heavy-ion collisions, Phys. Rev. Lett. 54, 781 (1985). http://prola.aps.org/abstract/PRL/v54/i8/p781_

    Theory of positron production in heavy-ion collisions

    Get PDF
    Collisions of very heavy ions at energies close to the Coulomb barrier are discussed as a unique tool to study the behavior of the electron-positron field in the presence of strong external electromagnetic fields. To calculate the excitation processes induced by the collision dynamics, a semiclassical model is employed and adapted to describe the field-theoretical many-particle system. An expansion in the adiabatic molecular basis is chosen. Energies and matrix elements are calculated using the monopole approximation. In a supercritical (Z1+Z2≳173) quasiatomic system the 1s level joins the antiparticle continuum and becomes a resonance, rendering the neutral vacuum state unstable. Several methods of treating the corresponding time-dependent problem are discussed. A projection-operator technique is introduced for a fully dynamical treatment of the resonance. Positron excitation rates in s1/2 and p1/2 states are obtained by numerical solution of the coupled-channel equations and are compared with results from first- plus second-order perturbation theory. Calculations are performed for subcritical and supercritical collisions of Pb-Pb, Pb-U, U-U, and U-Cf. Strong relativistic deformations of the wave functions and the growing contributions from inner-shell bound states lead to a very steep Z dependence of positron production. The results are compared with available data from experiments done at GSI. Correlations between electrons and positrons are briefly discussed

    Neutrino factory optimization for non-standard interactions

    Full text link
    We study the optimization of a neutrino factory with respect to non-standard neutral current neutrino interactions, and compare the results to those obtained without non-standard interactions. We discuss the muon energy, baselines, and oscillation channels as degrees of freedom. Our conclusions are based on both analytical calculations and on a full numerical simulation of the neutrino factory setup proposed by the international design study (IDS-NF). We consider all possible non-standard parameters, and include their complex phases. We identify the impact of the different parameters on the golden, silver, and disappearance channels. We come to the conclusion that, even in the presence of non-standard interactions, the performance of the neutrino factory hardly profits from a silver channel detector, unless the muon energy is significantly increased compared to the IDS-NF setup. Apart from the dispensable silver channel detector, we demonstrate that the IDS-NF setup is close to optimal even if non-standard interactions are considered. We find that one very long baseline is a key component in the search for non-standard interactions, in particular for |\epsilon^m_{\mu\tau}| and |\epsilon^m_{\tau\tau}|.Comment: LaTeX, 30 pages, 7 figures, 1 tabl

    Collective sideward flow of nuclear matter in violent high-energy heavy-ion collisions

    Get PDF
    Angular and energy distributions of fragments emitted from fast nucleus-nucleus collisions (Ne--> U at 250, 400, and 800 MeV/N) are calculated with use of nuclear fluid dynamics. A characteristic dependence of the energy spectra and angular distributions on the impact parameter is predicted. The preferential sideward emission of reaction fragments observed in the calculation for nearly central collisions seems to be supported by recent experimental data

    Description of atomic excitations in heavy-ion reactions

    Get PDF
    Excitations of the atomic shell in heavy-ion collisions are influenced by the presence of a nuclear reaction. In the present Rapid Communication we point out the equivalence between a semiclassical description based on the nuclear autocorrelation function with an earlier model which employs a distribution of reaction times f(T). For the example of U+U collisions, results of coupled-channel calculations for positron creation and K-hole excitations are discussed for two schematic reaction models

    Delta-electron emission in deep-inelastic heavy-ion collisions

    Get PDF
    This paper reports calculations of the influence of a reaction time T>10-21 s in deep-inelastic Xe-Pb collisions on the energy spectrum of δ electrons ejected in the same collision. It is shown that the lifetime of the superheavy composite system causes pronounced oscillations of width ε=h/T in the electron distribution, which survive the inclusion of multistep excitations and the folding with a lifetime distribution function. This effect may serve as an atomic clock for deep-inelastic collisions
    • …
    corecore