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Collisions of very heavy ions at energies close to the Coulomb barrier are discussed as a unique tool to study the 
behavior of the electron-positron field in the presence of strong extemal electromagnetic fields. To calculate the 
excitation processes induced by the collision dynamics, a semiclassical model is employed and adapted to describe 
the field-theoretical many-particle system. An expansion in the adiabatic molecular basis is chosen. Energies and 
matrix elements are calculated using the monopole approximation. In a supercritical (2, + Z, 2 173) quasiatomic 
system the 1s level joins the antiparticle continuum and becomes a resonance, rendering the neutral vacuum state 
unstable. Several methods of treating the corresponding time-dependent problem are discussed. A projection- 
Operator technique is introduced for a fully dynamical treatment of the resonance. Positron excitation rates in s„ ,  
andp, , ]  states are obtained by numencal solution of the coupled-channel equations and are compared with results 
from first- plus second-order perturbation theory. Calculations are performed for subcritical and supercritical 
collisions of Pb-Pb, Pb-U, U-U, and U-Cf. Strong relativistic deformations of the wave functions and the growing 
contributions from inner-shell bound states lead to a very steep Z dependence of positron production. The results are 
compared with available data from experiments done at GSI. Correlations between electrons and positrons are 
briefly discussed. 

I. INTRODUCTION 

The peculiarities of the behavior of electrons in 
strong external electromagnetic fieldsl-' have at- 
tracted continuous interest ever since the beginn- 
ings of relativistic quantum mechanics. The an- 
omalous behavior of reflection and transmission 
coefficients for electrons incident on a potential 
ba r r i e r  higher than 2rnc2 became known a s  Klein's 
paradox.' Responsible for this effect i s  the mixing 
between positive- and negative-frequency solutions 
which leads to the creation of electron-positron 
p a i r ~ . ~ - "  This i s  most simply understood in Di- 
rac ' s  hole picture: An electron from the totally 
occupied negative continuum can be se t  f ree  by 
tunneling through the gap, leaving a hole, i.e., 
positron behind. Strong electric fields which ex- 
tend over a sufficiently large a r e a  of space can 
continuously produce pairs.13 

Related to this phenomenon i s  the problem of a 
strong and localized potential well,  the physics of 
which has been fully understood for  only a decade. 
Let us  think of the stationary potential well pro-  
duced by the Coulomb field of an extended heavy 
nucleus. With increasing strength of the potential 
the energies of al l  bound states decrease steadily. 
At 2 = 150 (assuming normal nuclear density) the 
1s s ta te  obtains negative total energy and at  Z„  
L= 172 (Refs. 10 and 14-16) it enters  the negative 
energy continuum E„< -mc2. At this point the 
spectrum of eigenstates of the Dirac equation is 
subject to a characterist ic  change. The 1s  state 

becomes a resonance, which decays spontaneously 
by emission of two (due to spin degeneracy) posi- 
t rons if it were prepared empty. The new stable 
ground state of the system consists of the nu- 
cleus plus two electrons in the K shell; it is called 
the charged v a ~ u u m . ' ~ * ' ~  The experimental ex- 
ploration of this new phenomenon would constitute 
an important test of the theory of quantum electro- 
dynamics (QED) in the region of strong fields. 

Interest in this a r ea  was nourished by specula- 
tions on the existence of superheavy nuclei. Un- 
fortunately nuclei with sufficiently high charge 
(2 > 172 for  normal density, 2 > 137 for pointlike 
charge) have not been found and probably do not 
exist. The only known way to assemble a super- 
cri t ical  charge at  least for a limited period of 
time is in collisions of very heavy ions, where 
charges up to Z , + Z , =  190 can be reached. In 
such scattering experiments, however, the dy- 
namics of the collision becomes extremely im- 
portant. The time scale must be sufficiently long 
to allow the electrons (positrons) to adjust to the 
variation of the combined Coulomb field of the two 
nuclei. Since typical velocities required to bring 
the nuclei closely together a r e  about v/cE 0.1, an 
adiabatic description i s  meaningful only for  fast  
moving electrons. When the total nuclear charge 
exceeds the inverse fine-structure constant 
(2, + Z ,)cr > 1 the electronic wave functions a r e  
very sensitive to the internuclear distance R( t ) .  
This is related to the well-known singularity of 
the solutions of the relativistic point-nucleus 
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problem at Z = l/a 137, where the wave functions 
of all sl12 and pl12 states are  found to collapse 
(for a further discussion of this problem See also 
Ref. 19). Owing to this effect the nuclear motion 
induces strong excitations which give rise to the 
formation of inner-shell holes and to the emission 
of 6 electrons and positrons. 

Over the last several  years various aspects of 
the excitation process in collisions of very highly 
charged systems have been investigated. The re-  
sults of recent experiments, mostly performed at 
GSI (Darmstadt), a re  in general agreement with 
theoretical predictions. In the present article we 
will concentrate on positron creation. In particu- 
lar  , our aim is to give an adequate description of 
this process in collisions of very heavy ions. 
Pa i r  creation in charged-particle collisions has 
been extensively investigated using Born approxi- 
mation or the Weizsäcker-Williams approxima- 
tion which a re  applicable to collisions of light 
particles or at highly relativistic energies. In 
the case of heavy particles colliding at "low" ve- 
locities , however , the use of the Born approxima- 
tion is unjustified. This was demonstrated by the 
experimental disproof of the validity of the Heitler- 
Nordheim f ~ r m u l a ~ ~ ~ ~ ~  in proton-nucleus colli- 

AS shown in Refs. 24 and 25 the nuclear 
Coulomb repulsion greatly reduces pair Cross 
sections. 

Even more important for our problem is the cor- 
rec t  treatment of the distortion of electron and 
positron states in the Coulomb field of the two nu- 
clei as  discussed above. As a consequence, the 
rate for direct pair production grows very rapidly 
with increasing nuclear charge in the superheavy 
region. This has to be compared with the ZSZ: 
dependence deduced from the lowest-order Feyn- 
man diagram. Furthermore the role of inner- 
shell bound states (in particular 1s and 2filI2) be- 
Comes increasingly important if L ,+Z2  approaches 
Z„. These may act as intermediate states in 
multistep excitations or (in the still hypothetical 
collisions of naked nuclei) be the dominant final 
states for the created electron. 

In the following we will f irst  describe the quasi- 
molecular model for electronic excitations using 
the independent-electron approximation. Proper- 
ties of the resulting amplitudes are  discussed and 
their use in the calculation of pair creation is 
demonstrated. In Sec. I11 we will discuss the 
special problems arising in the case of supercri- 
tical collisions (Z,+Z,>Z„). We introduce a 
method to treat the time-dependent resonance 
which is  based on a projection-operator technique 
(Sec. W ) .  Preliminary accounts of this theory 
have been given in Refs. 26 and 27. The final sec- 
tions contain details of the model employed and 

the numerical results for positron creation in sev- 
e ra l  collision systems, which a re  compared with 
currently available experimental data. If not 
stated otherwise, we will use natural units, 8= m, 
= C  = 1, i.e., energies are  measured in multiples 
of 511.004 keV and lengths in multiples of the 
Compton wavelength of the electron 386.159 fm. 

11. ELECTRONIC EXCITATIONS IN THE ADIABATIC 
PICTURE 

A vast number of methods and approximation 
schemes has been developed to calculate electron- 
ic-excitation processes in atomic collisions (see, 
e.g., Refs. 28-30). Until recently the theory of 
excitations in collisions of very heavy ions has 
received comparatively little attention due to com- 
putational difficulties and lack of experimental 
data. In the present work we are  interested in the 
creation of positrons in collisions of very heavy 
ions at energies comparable to the nuclear Cou- 
lomb barrier. As implied already in the motiva- 
tion given in the first  section, these collisions 
a r e  characterized by the coherent action of the 
combined nuclear Coulomb centers. Under these 
conditions first-order perturbational calculations 
a r e  not sufficient. In particular, a correct de- 
scription of inner-shell bound states becomes 
essential. Therefore we have to develop a theory 
which treats electronic bound states and positrons 
in a unified manner and allows for multiple exci- 
tations. 

The nuclear motion will be treated classically 
throughout, since the Bohr-Sommerfeld parame- 
ter  77 = Z , Z , ~ ~ / E V  i s  very iarge compared to uni@ 
for the envisaged systems. Furthermore the ener- 
gy transferred to the electron-positron field can 
be neglected compared to the nuclear kinetic en- 
ergy. In the semiclassical approximation the nu- 
clei a re  treated as sources of a time-dependent 
external potential. Since the interesting excita- 
tions occur predominantly at small internuclear 
distances, Rutherford trajectories have to be 
used to describe the nuclear motion. AS usual, 
the electronic wave function is  expanded in a com- 
plete se t  of basis states. The scattering problem 
thereby is reduced to an infinite System of coupled 
differential equations in time, which may be 
solved numerically after truncation of the basis. 
For electrons moving relativistically the nuclear 
motion is "slow", v / c  5 0.1, s o  that an adiabatic 
basis se t  of molecular two-center Dirac (TCD) 
solutions will lead to the best convergence. The 
actual calculations will be performed using the 
monopole approximation to the two-center wave 
functions. 

In the following we will write the coupled differ- 
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ential equations governing the time development 
of the one-electron occupation amplitudes. Next, 
various useful symmetry relations between these 
amplitudes a r e  discussed. Finally, using the 
language of second quantization, we will demon- 
s t ra te  how the single-particle amplitudes a re  r e -  
lated to production rates of electrons , holes, and 
positrons. 

A. The coupled-channel equations 

The wave function of a single electron moving in 
the externally prescribed time-dependent electro- 
magnetic field generated by the colliding nuclei i s  
determined by the Dirac equation 

with the two-center Hamiltonian -. 
H ~ ~ ~ =  (Y [ij - eA(F,R(t))]+ ev(F,R(t))+ ßrn . 

If the electron occupies a definite atomic state @ j  

before the collision, Eq. (2.1) has to be solved 
with the boundary condition @:"(t - -W)-  @ j .  The 
final amplitude for the excitation of a particular 
state is given by the overlap of its wave function 
with @j+'( t-W).  In the absence of incident photons 
the electromagnetic potential (A , v )  can be calcu- 
lated from the current generated by the moving 
nuclei, i.e., 

where DR i s  the retarded Green's function of the 
wave equation. In the Coulomb gauge the timelike 
component reduces to the instantaneous interaction 

assuming, for shortness,  point nuclei. The mag- 
netic31 and r e t a r d a t i ~ n ~ ~  effects contained in the 
vector potential will be neglected since they a re  
of higher order in v/c. A further investigation of 

in the Coulomb gauge and the resulting polariza- 
tion effects has been given in Ref. 33.  

A direct integration of the dynamical two-center 
Dirac problem analogous to the case of p-H colli- 
sions for the Schrödinger e q ~ a t i o n ~ ~  up to now has 
not been attempted. It would be very demanding 
numerically, particularly if  one were interested 
in the energy spectra of emitted particles. 
Instead, the time-dependent wave function a i ( t )  
is expanded in some complete se t  of basis states 
@,(t) 

@i( t )=  xajk( t )@b(t )e- ix*( t '  . (2.5) 
k 

The summation here and in the following i s  un- 
derstood to include integration over the continuous 
par ts  of the spectrum. The phase factor xb(t) is 
conveniently chosen so  as  to eliminate the diagonal 
matrix element of the Hamiltonian, i.e., 

The value of t ,  is arbitrary , it  defines the Overall 
phase of the amplitudes. 

The resulting system of coupled differential 
equations for the expansion amplitudes equivalent 
to (2.1) i s  

In general, therefore, excitations are  caused by 
two kinds of coupling operators: ~ / a t  acting on 
the parametric time dependence of the wave func- 
tion, and H which may be nondiagonal in the basis 
4,. The time-derivative operator in (2.7) may be 
split in a radial and a rotational part  8/8t -fi a / a ~  -. -. 
- i w  . j , where iz the electronic angular momen- 
tum operator and w  the angular velocity of the in- 
ternuclear axis. 

If the basis set  i s  nonorthogonal, (2.7) i s  modi- 
f ied to 

T o  solve for b „  the coupling matrix has to be 
multiplied by the inverse of the overlap matrix. 

While in principle the Set of equations (2.7) i s  
s t i l l  exact , it can be solved only by approximation 
methods so  that the outcome of practical calcu- 
lations depends critically on the chosen basis 6,. 
Two special choices have been widely used. 

(1) The atornic picture where the eigenstates of 
the target atom are  disturbed by the time-depen- 
dent Coulomb field of the passing projectile. Ex- 
cept for recoil effects only potential coupling is 
present. The SCA (semiclassical approximation) 
model, which was pioneered by Bang and Han- 
~ t e e n , ~ ~  has been successful in describing highly 
asymmetric collisions. For slow o r  symmetric 
collisions the adiabatic relaxation of the wave 
functions becomes important and can be included 
only approximately by binding-energy and polar- 
ization corrections. A model for symmetric col- 
lisions was proposed by Briggs,35 who uses the 
stationary states of the united atom limit a s  a 
bas is . 
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(2) In slow near-symmetric collisions the quasi- 
molecular picture becomes applicable. The basis 
consists of the eigenstates of the stationary two- 
center problem 

evaluated at each internuclear distance. The coup- 
lings in the PSS (perturbed stationary state) model 
a r e  solely due to the a/at operator; a s  discussed 
a t  length in Sec. IV, this will change in super- 
critical collision. There the adiabatic 1s state 
becomes unstable even without the imposition 
of an external time dependence. 

in the present work we are  interested in close 
collisions of very heavy systems. The nuclear 
motion can be regarded a s  slow compared to the 
relativistic velocities of the electrons in the inner- 
most bound states, 36 which speaks in favor of the 
adiabatic picture. A more detailed study of this 
problem i s  given in Ref. 37 where the "optimal" 
basis having a minimal excitation strength i s  
found to follow closely the adiabatic basis. 

B. Properties of the excitation amplitudes 

The amplitudes a„(t) describing the transition 
of an electron from state i to state j in the Course 
of the collision satisfy several useful symmetry 
relations. These may be used for the reduction 
of computational effort and for checks of the nu- 
merical accuracy. All relations given a r e  exact 
if the solutions of the coupled differential equa- 
tions a r e  inserted, irrespective of the choice 
and size of the basis. We start  from the observa- 
tion that the coupling matrix 

,wfk 3(qjla/at +i~l@R> 

entering (2.7) is anti-Hermitian (if an orthonormal 
basis set is used): 

Mjk = -M&. (2.10) 

(i) The orthonormality condition 

~ h ( t ) a ~ ~ ( t ) = 6 , ~  (2.11) 
k 

can be verified by differentiation with respect 
to time and use of (2.7) and (2.10). This condition 
implies the orthogonality of the set of wave func- 
tions at every instant of time 

(@~( t ) I@~( t ) )  = 61j, (2.12) 

which could have been expected from the unitarity 
of the time-development operator. 

(ii) The identity 

a&(t)akf( t )=6„ (2.1 3) 

can be deduced in a similar way. It guarantees 
the completeness of the set  Q k  at any time if one 
s tar ts  from a complete basis C$,. 

(iii) in a time-symmetric collision one has 
also 

in contrast to (2.12) and (2.13) this identity is 
valid only in the limit t-.o. It reflects the prin- 
ciple of detailed balance which equates the transi- 
tion rates in both directions of a given reaction 
if the interaction i s  invariant under time reflec- 
tion. Thus (2.14) is valid only for collisions with 
a symmetric nuclear trajectory, i.e., ~ ( t )  =R (- t)  
and J ( t )  =G(- t )  which holds for Coulomb scatter- 
ing neglecting loss of energy and angular momen- 
tum. In this case the coupling matrix elements 
between the monopole basis states discussed below 
satisfy 

which leads to (2.14) if inserted in the complex 
conjugate of the differential equation (2.7). In 
general (2.15) i s  correct only up to a phase factor 
and (2.14) holds only for the absolute ~ a l u e s . ~ *  
This restriction applies also if the phases X ,  ( t )  
a r e  not chosen symmetric with respect to t = 0. 

This equation holds under the Same conditions 
a s  (2.14). It can be derived using the time-devel- 
opment operator defined by a„ ( t )  = Wj,(t, t,)a„(t,). 
Because of (2.15) and (2.7), W satisfies the sym- 
metry relation 

which together with the unitarity condition 

~ - ' ( t ,  t,) = W(t„ t)  = W(t,  to) 

and the identification Wi,(O, - W )  = a,,(O), proves 
(2.16). The identity shows that it is  sufficient to 
calculate the excitation amplitudes a„(O) for the 
incoming branch of the trajectory only. Equation 
(2.16) is immediately generalized for time- 
asymmetric collisions; the se ts  a„(O) and a„(O) 
then have to be calculated for different kinematics. 
An extension of this formalism and its use for 
the calculation of electronic excitations in deep 
inelastic collisions and for muon-induced fission 
recently has been discussed by Müller and Ober- 
acke r .  39 

C. Excitations of the many-electron system 

The discussion up to now was concerned with 
single-electron excitations only. This is clearly 
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insufficient s ince many atomic electrons a r e  
usually p resen t  a t  the beginning of a heavy-ion 
collision. Fur thermore ,  if p a i r  creat ion is to 
be  described the antiparticle continuum must  be  
t reated properly.  In Dirac 's  hole picture al l  s t a tes  
of the lower continuum a r e  occupied by electrons.  

It turns out, however, that the p resence  of 
many electrons does not lead to any additional 
problems if the electron-electron interaction is 
neglected (or approximated by an effective single- 
par t i c le  potential, Thomas-Fermi ,  Har t ree -  
Fock, etc.).  Under this approximation the elec-  
t rons  can  influence each other  through the Paul i  
exclusion principle only. But s ince the time- 
dependent wave functions @? of two electrons 
initially in  different s t a t e s  remain  orthogonal 
throughout the collision, cf. Eq. (2.121, the Pauli 
principle has no effect on the excitation  rate^.^'^^^ 
If one is not interested in correlat ions between 
s e v e r a l  par t ic les  o r  holes, the excitation ra tes  
a r e  given by a n  incoherent summation of single- 
par t i c le  t ransi t ion probabilities.  This  remains  
t r u e  also if the electron-electron interaction is 
approximated by a mean screening potential 
common to a l l  e lectrons.  

T h e  many-particle aspects  a r e  mos t  conven- 
iently described in the language of second quan- 
tization. Working in the Heisenberg picture we 
introduce a constant s ta te  vector  ] F )  defined by 
the preparat ion of the collision system. The  field 
opera tor  * (X,  t )  which contains the dependence 
on t ime is expanded in a Fock decomposition 

where  @Y denotes aAcomplete s e t  of unquantized 
wave functions and d: and b, a r e  creat ion Oper- 
a t o r s  f o r  holes and annihilation operators  fo r  
par t i c les ,  respectively. They a r e  defined with 
respec t  to  the " F e r m i  level" F, the boundary 
between initially occ!pieG and empty s ta tes .  

The  opera tors  b:, b,, d:, and d,  sat isfy the usual  
fermionic anticommutation relations. The i r  
action on the Heisenberg s ta te  ] F )  i s  

The  equation of motion reads  

therefore,  the 8,, d, become constant i f  the bas i s  
@Y' i s  identified with the s e t  of solutions of the 
time-dependent single-particle Di rac  equation 
(2.7). Since the bas i s  @Y sat isf ies  the b o u ~ d a r y  
condition a t  t - - the number opera tors  d :L?„ 
bt 6, do not descr ibe  physically observable p a r -  

t ic les  a f te r  the collision. Instead, one has to 
employ a s e t  which asymptotically cor re la tes  to 
a definite final s ta te  of the separated sys tem.  
Using +F', the dynamic solutions of (2.1) satisfying 
outgoing boundary condition, one has the al ternate  
expansion 

Equatiiig (2.17) and (2.20) yields a canonical t rans -  
formation between the two s e t s  of par t ic le  and 
hole opera tors ,  where the expansion coefficients 
(@:)I+:)\ a r e  just the amplitudes a,,(a) discussed 
above 

C . =  d:aki+ akaki f o r  i > F .  
-I 

k<F k>F 

The number of par t ic les  created in a s ta te  above 
the F e r m i  level i > F  is 

and the number of holes in a s ta te  below the F e r m i  
level i <F is  

These  s imple  resul ts  contain a summation over  
al l  possible many-electron configurations with a 
part ic le  (hole) in the level i. If one is interested 
in more  detailed information on the final-state 
additional coherent t e r m s  a r i ~ e . ~ ' . ~ '  The number 
of correlated particle-hole p a i r s  i s  given by the 
expectation value of the product of number op- 
e r a t o r s  

T h e  Same formula holds a l so  in  the c a s e  of Par -  
ticle-particle and hole-hole correlat ions if the 
plus sign i s  replaced by a minus sign. The f i r s t  
t e r m  of (2.24) descr ibes  s tat is t ical  coincidences 
while the s u m  contains coherent correlat ion ef- 
fects .  When the excitation r a t e s  a r e  low, the 
second t e r m  becomes dominant s ince the prob- 
ability fo r  multiple excitations decreases  rapidly. 
T o  analyze experiments  which do not distinguish 
between severa l  s ta tes  (e.g., Spin degeneracy) 
additional incoherent t e r m s  have to b e  added.43 
Electron-positron coincidences a r e  discussed in 
m o r e  detail  in  the Appendix. 



111. DYNAMICAL TREATMENT OF SUPERCRITICAL 
COLLISIONS 

The theoretical discussion up to now has been 
limited to subcritical collisons where the energy 
eigenvalues of the adiabatic electronic bound states 
are  confined to the gap region - m c 2 < ~ < m c 2 .  In 
supercritical collisions, the deepest bound state 
joins the lower continuum and becomes a reso- 
nance. In the static limit, a hole brought into this 
state will decay spontaneously by positron emis- 
sion leaving a stable filled atomic K shell.' The 
lifetime of the resonance is of the order 10-l9 s 
and therefore considerably larger than the col- 
lision time (-2 X 10-'I s for U-U collisions with 
Y < R„). Excitations induced by the nuclear motion 
will be of eminent importance. Therefore a for- 
malism is  required which describes dynamical 
excitations and at the Same time accounts for the 
resonance character of the supercritical state. 

The coupled differential equations (2.7) a re  not 
directly applicable to this situation: In the region 
It 1 <t„ the l s u  state together with its amplitude 

disappears from the se t  of discrete states. In- 
stead, the radial coupling matrix elements in- 
volving the lower continuum develop very strong 
and narrow (few keV) maxima near the (time- 
dependent) position of the resonance. These cou- 
plings a r e  not suitable for numerical treatment. 
In the following we will briefly discuss several 
possible methods of treating excitations involving 
the time-dependent resonance and illustrate the 
difficulties encountered. A projection method 
which seems to be best suited for practical cal- 
culations will be introduced and developed in 
detail in the next section. 

(i) The static approximation. Here one assumes 
an undisturbed decay of the resonance taking 
place at each point of the trajectory. The transi- 
tion rate is proportional to the decay width r ( t )  
which is determined parametrically by the nuclear 
m ~ t i o n . ~ ~ ~  45 This approximation is  insufficient; 
it does not take into account the finite oscillations 
of the phase factor in (2.7). Coherence of hole 
excitation and positron emission and, most im- 
portant, the consequences of dynamical broadening 
may not be neglected. 

(ii) Discretization of the continuum. When using 
the adiabatic basis in the supercritical case the 
l s u  state i s  represented by a narrow resonance 
in the negative energy continuum. In any num- 
erical  calculation with a reasonable mesh size 
the resonance position will only accidentally 
coincide with a grid point making a straightforward 
solution of the coupled-channel equations impos- 
sible. To ensure the inclusion of the resonance 
state at any internuclear distance R, the spec- 

trum of the Dirac Hamiltonian could be dis- 
cretized by imposing a boundary condition on the 
wave functions at the surface of a sufficiently 
large volume. As sketched schematically in Fig. 
1, the l s o  level then joins the lower continuum 
as  an additional ~ t a t e . ~ . '  Its wave function could 
be traced by a ser ies  of avoided crossings with 
very large radial coupling matrix elements. In 
any collision with nonvanishing velocity a l s u  
hole will follow the "diabatic" state. Only a minute 
fraction of the number of holes will remain in 
the continuum. Obviously it will be very difficult 
to calculate this probability with any precision 
using the discretized adiabatic basis. 

(iii) Use of a subcritical basis. Problems 
associated with the dynamical treatment of the 
resonance might be avoided by using a basis which 
remains subcritical throughout the whole col- 
lision. This is most easily achieved if one uses 
not the adiabatic eigenstates of H(R(t)), but those 
of a modified Hamiltonian H(p(t)), where p(t) 
describes a trajectory satisfying p>Rcr. The 
function p(t) may be chosen arbitrarily, the sim- 
plest choice being p(t) =R(t)  for ( t  ( > t o  and p(t) 
=Ro for lt 1 <to. For R, =Rcr this corresponds to 
a switching from the adiabatic basis in the sub- 
critical region to a frozen basis in the supercri- 
tical domain. 

If the colliding nuclei approach to distances 
R(t) closer than R„ there will arise potential 
couplings due to the operator w = H ( ~ ( t ) )  - H  (R,). 
The coupled-channel equations then a r e  modified 
according to 

x e  for (3.1) 

FIG. 1. Schematic graph of the l s u  energy as a func- 
tion of time in a supercritical collision assuming a 
discretization of the spectrum. 
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where @,= @ , ( ~ ( t , ) )  denotes the fixed bas i s  s ta tes .  
This  descript ion in principle is c o r r e c t  and the 

couplings a r e  easi ly  numerically manageable. 
It tu rns  out, however, tha t  it  i s  very difficult to 
achieve completeness  in the modified bas i s  $Ja. 
T h e  nondiagonal mat r ix  elements  of AH d e c r e a s e  
only very slowly with increasing energy Separation 
between initial and final s t a t e s  s o  that a for-  
biddingly l a r g e  number of channels would have 
to be  included in the calculation. A s  an example, 
s o m e  radial  and potential couplings f rom the 1s 
s t a t e  in  the subcri t ical  sys tem Pb-Pb  a r e  given 
in Table I. In the upper-half the completeness 
relat ion 

is tested. The  summation includes eight bound 
sl12 s t a t e s  (f i rs t  line) and in addition the electron 
continuum up to E, = 6 m c 2  (second line). T h e  wave 
functions have been calculated in monopole ap- 
proximation, and the expectation value of a/aR 
was  obtained by numerical  differentiation. In 
view of the limited numerical  accuracy Eq. (3.2) 
is r a t h e r  well fulfilled for  the chosen basis .  T h e  
situation is drast ical ly  different fo r  the potential 
couplings (lower-half of Table  I). H e r e  the b a s i s  
wave functions $J: have been calculated f o r  the 
fixed dis tance R,=50 fm,  the mat r ix  elements  
were  evaluated at  R = 16 and 40 fm. In the com- 
~ a r i s o n  of (@,I (AH)'I @lS) arid C*I(@~IAHI @is)I2 

the calculated value of the s u m  is much too small .  
Th is  demons t ra tes  that i t  is necessary  to include 
electron s t a t e s  of very high energy i f  one t r i e s  to 

TABLE I. Check of the completeness relation using 
the adiabatic basis (upper-half) and a basis frozen at 
R ,  =50 fm (lower-half). The wave functions a re  calcu- 
lated in monopole approximation for two internuclear 
distances. Eight bound s i / ~  states and continuum elec- 
trons up to 6mc2 are included. 

expand the time-dependent electronic  wave func- 
tion in  a subcri t ical  basis .  

IV. A PROJECTION METHOD FOR THE 
SUPERCRITICAL RESONANCE STATE 

A. General considerations 

The methods used to descr ibe  excitations in 
supercr i t i ca l  collisions discussed in the l a s t  s e c -  
tion a l l  had s o m e  se r ious  disadvantages making 
them unsuitable f o r  numerical  calculations. Now 
we will develop a f o r m a l i ~ m ~ ~ , ~ ~  which avoids 
these  difficulties and moreover  has heuris t ic  
value f o r  the interpretation of the posi t ron-crea-  
tion process .  We s t a r t  f rom the observation that 
the continuum wave function of the supercr i t ical  
sys tem a t  resonance energy E,= EnS i s  quite s i m -  
i l a r  to the d i sc re te  lsu s t a t e  in the subcri t ical  
c a s e .  In addition to a s t rongly localized density 
distribution having the extension of the atomic K 
shel l ,  the f o r m e r  exhibits a n  oscillating tail  
(small  in amplitude) reaching out to infinity ( see  
Fig. 2). T h i s  s t ruc ture  re f lec t s  the occur rence  
of a tunneling p r o c e s s  through the gap s e -  
parating the part ic le  and antiparticle solutions 
of the Dirac equation (cf. the problem of 
Klein's paradox quoted in the introduction). Apart  
f r o m  the asymptotic behavior the lsa wave func- 
tion retains  much of i t s  identity. Many proper-  
t i e s ,  e .  g .  , the radial  mat r ix  elements f o r  ion- 
ization, may be  continued smoothly to the super -  
c r i t i ca l  region just by neglecting the ta i l  of the 
wave function. This procedure can be  put on a 
f i r m e r  bas i s .  In a f i r s t  s t ep  a "quasibound" 
resonance s t a t e  I a,) i s  defined a s  a reasonable 

FIG. 2. The potential well V ( r )  in a U-U quasimole- 
cule near nuclear contact ( R = 1 6  fm). Also shown are 
the borders of the gap V ( r )  i mc2 ,  the energy of the lscr 
resonance, and the density of the positron continuum 
wave function at resonance energy. The density is  
drawn on a logarithmic scale covering Ca. five orders 
of magnitude. 
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approximation t o  the lsa s t a t e  in the absence of 
a penetrable tunneling b a r r i e r .  In a second s t e p  
a new positron continuum I qEp) has  to b e  con- 
s t ructed which excludes the resonance,  is ortho- 
gonal to  I@,), and p r e s e r v e s  completeness .  This 
is achieved with a projection-operator technique 
which had been developed f o r  applications in 
nuclear  physics P7 The  resul t ing s e t  of modified 
s tat ionary s t a t e s  will be used as a bas i s  f o r  
expanding t h e  time-dependent wave function in 
analogy with Eq.  (2.5).  

B. The projection method 

We s t a r t  f r o m  the assumption .that a "physically 
reasonable" wave function I@,) describing the  
bound-state p roper t i es  of the resonance has  been 
found (for a f u r t h e r  discussion See below). This  
s t a t e  should b e  normalized 

( @ R I @ J = l  (4.1) 

and orthogonal to  the s t a t e s  I@,) outside the posi- 
t ron  continuum 

( $ a l + R ) E  , (4.2) 

where I G,) denotes a l l  bound s ta tes  and the  elec-  
t ron continuum. The resonance now is to be ex- 
t racted f r o m  the positron continuum 1 $,#) r e -  
sulting in a modified continuum orthogonal 
to the bound s t a t e  

($E#l@R) = O  (4.3) 

which s t i l l  Spans the Same subspace.  
This  problem was  solved in nuclear physics in  

connection with the continuum shel l  
The applied formal i sm makes  use  of projection 
opera tors  P and Q,  introduced by ~ e s h b a c h , ~ ~  
projecting on "open" and "closed" channels. In 
the subcri t ical  c a s e  they will be  defined to pro-  
ject on the space  of continuum positron s t a t e s  

PO = J d ~ f i  1 I 
and on its complement 

1 $,p) and I +,) a r e  eigenstates  of the Hamiltonian 
H ,  

(E , -H) (+ ,p>=0and(~ , -H)1@,)=0 ,  (4.6) 

s o  that P, and Q, sat isfy the usual relat ions of 
orthogonal projection opera tors  

e=Po, Qg=Qo, PoQo=O ; 

if the s t rength of the potential exceeds the c r i -  

t ical  value the l s o  s t a t e  becomes a resonance in 
the positron continuum thus entering P, space.  
The a i m  now i s  to t rans fe r  the bound-state con- 
tribution represented by the wave function aR to 
Q space .  We define the new projection opera tors  

Under the assumption (4.2) the operators  Q ,  P 
again a r e  orthogonal p ro jec tors .  If @, was chosen 
judiciously the newly defined modified continuum 
$, will no longer show resonance behavior. The 
/ &J a r e  eigenstates of the Hamiltonian res t r i c ted  
to  the subspace P (Ref . 471, i .  e .  , 

Using (4.61, (4.7) ,  and the orthogonality relations 
(4.2) and (4.3),  this  equation may be  t ransformed 
to a m o r e  explicit f o r m  

The modified continuum s t a t e s  sat isfy the original 
Di rac  equation supplemented by a n  inhomogeneous 
t e r m  containing a n  integral  over the solution $E,.  

Fortunately the kerne1 i s  separab le  s o  that (4.9) 
can be solved easi ly  . 

The f o r m a l  solution of Eq. (4.9) using the 
Green 's  function G with (E - H) G = 1 has been 
given in Refs .  47 and 52. Project ing the general  
solution 

on (@, 1 and imposing the orthogonality relation 
(4.3) we obtain 

C i s  a normalization constant which depends on 
the boundary conditions and has  absolute value 
of unity if the propagator f o r  outgoing waves is 
used.  This i s  fu r ther  discussed in Ref. 52. 

Using the solution (4.11) i t  can be shown that 

and a l s o  

<$.;I H \  $,J = E ~ ( E ;  -E#) . (4.13) 

The modified continuum sat isf ies  the Same 
orthonormality relat ions a s  the old one. I t s  phase 
shif t ,  however, is changed by a counter t e r m  
which cancels  the s teep  variation near  the position 
of the resonance and leaves a smooth nonreson- 
at ing phase. 47 
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Equation (4.11) might b e  solved with the use  of 
the  Green's function G represented in coordinate 
space .  F o r  a spherical ly  symmetr ic  potential 
(monopole approximation) with asymptotic l/r 
behavior G ( r , r t )  expressed in t e r m s  of regular  
and i r r e g u l a r  solutions of the radial  equation i s  
well known. 54 On the other  hand, the defining 
equation (4.9) can be  solved direct ly  by a s t raight-  
forward integration procedure a s  reported by 
Wang and Shz~kin .~ '  It  consis ts  of the following 
s t e p s  : 

(i) Choose two different a r b i t r a r y  constants y"' 
and Y'". 

( i i )  Solve the inhomogenous Di rac  equations f o r  
eac  h constant 

(iii)  Represent  the general  solution by a l inear  
combination 

(iv) The orthogonality requirement  (a, I $E) = 0 
el iminates  one of the constants 

(V) The wave function is normalized asymptoti- 
cally (Y - W).  

The resul t ing 4, is independent of the choice of 
the constants  The nondiagonal mat r ix  ele- 
ments  of the Hamiltonian follow a s  

The projection formal i sm is easi ly  extended t o  
the c a s e  of s e v e r a l  resonances.  In the p resen t  
context this  is not required s ince in heavy-ion 
collisions a p a r t  f r o m  the l s u  only the 2p1,,u 
s t a t e  becomes supercr i t i ca l  (at Z- 185). in sym-  
met r ic  s y s t e m s  i n d  generally i f  the monopole 
approximation is used  the P ,U and s,/ ,U continua 
do not couple and can be t rea ted  independently. 
The 2.90 s t a t e  dives a t  2" 245, which is f a r  too 
high to be reached in a collision of two heavy 
ions. F o r  completeness  we will quote the r e s u l t ~ ~ ~  
applicable to the c a s e  of s e v e r a l  resonances. 

We a s s u m e  that  N resonances  have to be ex- 
t rac ted  f r o m  the continuum f o r  which a suitable 
s e t  of resonance s t a t e s  I G,) h a s  been defined, 

and the inhomogeneous Dirac equation (4.9) is gen- 
eral ized to 

which s t i l l  is separable .  The f o r m a l  solution of 
(4.18) is 

where the mat r ix  (G, I G  I G,) has  t o  be inverted. 
Similarly, the direct  integration method can be 
e ~ t e n d e d ~ ~  to include severa l  resonances.  Setting 

= 0 the inhomogeneous differential equations 

( H - E ) ) + E , ) ~ ) = Y ( ~ ) I G ~ )  (4.21) 

have t o  be solved f o r  all  i = 1, . . . , N. The ansatz  

together with the orthogonality requirement  (4.3) 
l eads  to  a sys tem of N l inear  equations. The r e -  
sulting modified continuum s t a t e  is 

The resonance s ta te  I G,) and i t s  associated 
modified positron continuum 14,) have to be de- 
termined a t  all values of the internuclear  distance 
R< R„. They will be used a s  a b a s i s  to expand 
the time-dependent wave function in complete 
analogy with the  subcri t ical  c a s e  (2.5), i.e., 

-- 

If the resonance energy E „  is identified with 
(@,I H\ G,) and the orthogonality relation (4.2) is 
fulfilled, we obtain the old s e t  of coupled dif- 
ferent ial  equations (2.7). There  a r i s e s ,  iiow- 
ever ,  one important  modification: Since the 
resonance s ta te  I G,) is not an eigenstate of H 
i t  has  an additional interaction with the continuum 
The coupling m a t r i x  elements  l s o -  E, must  be 
replaced by 

satisfying (+EJ~lmls ) - (4s l~ l+R)  + z  M ~ I H  GR) .  (4.25) 

( a i  1 @J,)= 6ij, (+,I @,)"o. (4.17) 
A hole p repared  i n  G, therefore will decay by 

The projection opera tors  now a r e  
W spontaneous posi t ron emission in addition to the 

B=$ Ima)(maI +F l@i)@,I , dynamically induced t ransi t ions described by the 
i= (4.18) a / ~ t  coupling. in the s tat ic  limit,  R ( t ) =  const,  

P = 1 - Q ,  this  leads to an exponential decay with the width 



where E, is taken at the position of the resonance. 
The developed formalism thus has led to the 

emergence of "induced" and "spontaneous" posi- 
tron couplings, the latter resulting from the 
presence of an unstable state 9, in the expansion 
basis. It is difficult, however, to draw simple 
conclusions from this fact. Both coupling matrix 
elements enter via their Fourier transforms, 
depending on the time development of the heavy- 
ion collision. Their contributions have to be 
added coherently so  that in a given collision there 
is no physical way to distinguish between them. 
As discussed in Sec. V, significant deviations of 
the positron-production rate in  supercritical 
collision systems are  expected only under favor- 
able conditions, i.e., in encounters with a pro- 
longed interaction time. 

C. Wave functions and matrix elements 

The projection method for constructing a modi- 
fied basis described in the last section starts  
f rom the quasibound state I aR). We have to find 
a prescription which generates a wave function 
I <PR) with the properties of a l s a  state. in parti- 
cular, i ts  binding energy and the radial coupling 
matrix elements to higher s-like bound and con- 
tinuum states should increase in smooth continua- 
tion of the values in the subcritical region R >R,. 

The construction of I 9R), in principle, i s  quite 
arbitrary. In a natural way this may be ac- 
complished by defining a resonance wave packet 
as a superposition of the old continuum states 
I$,@, integrated over a suitable energy interval 
which contains the position of the resonance. Such 
a definition was employed in Ref. 17 to study the 
spontaneous decay of the 1s-hole state. in Ref. 6 
the wave packet was used to obtain the density 
distribution of the supercritical K shell. The 
practical construction of I@,), however, seems 
to be quite tedious, i f  one wants to avoid further 
approximations. In the following therefore we 
will use another definition. 

The most straightforward prescription is to 
s tar t  from the positron continuum wave function 

at the energy of the resonance E,= E„„ cut- 
ting i t  off at large distances Y >Y,: 

9, 6) = cI$Eres(r)e (Y, - Y) . (4.27) 

The normalization constant C is determined by 

so that (4.1) is fulfilled. The cut-off wave func- 
tion (4.27) has been employed by Wang and S h a k i t ~ ~ ~  
and ~ t h e r s * - ~ '  to describe resonances in nuclear 

physics. The cut-off distance r, is a somewhat 
arbitrary parameter which should be chosen to lie 
within the region of the tunneling barrier defined 
by r - < r < r +  with E„, - V(ri) i m c 2 =  0. At larger 
distances r the wavefunction I$% begins to oscil- 
late. This is illustrated in Fig. 2 where the den- 
sity of the positron wave function at E = E„, is 
shown together with the gap of the Dirac equation 
and the nuclear Coulomb potential V(?'). The sys- 
tem is U-U at internuclear distance R = 16 fm, 
i.e., a t  nuclear contact. 

To avoid problems associated with the discon- 
tinuity of the wave function introduced by (4.27) 
we have adopted a modified cut-off procedure for 
the following calculations: <PR will be defined as 
an eigenfunction of the Dirac Hamiltonian with the 
modified potential 

Y (Y) = 9 (yC -Y) V(Y) + e (r  - Y,) V(,-,) . (4.29) 

For distances r <Yc, Y agrees with the old poten- 
tial V; at large distances the potential is kept 
fixed so that the 1s energy remains inside the gap 
region. This artifice produces a smoothly de- 
creasing tail of aR, while the wave function agrees 
with in the interior region. 

The value of Y, is defined by ER - V(Y,) = -ymc2, 
and we will use Y =  0.9 in the following calcula- 
tions. With this prescription Y, is close to the 
outer turning point r+. As an illustration, Fig. 2 
shows the potential V(Y) and the resonance wave 
function obtained by this procedure for the system 
U-U at  R = 16 fm. Snce  r, becomes large for ER 
close to the boundary of the continuum there is 
a smooth transition from the subcritical region. 
The distance r, is energy dependent, therefore 
the binding energy ER and the wave function 9, 
have to be obtained from a self-consistent solu- 
tion of the Dirac equation 

where H =  T + 7 .  As demonstrated in Table 11, 
the value of ER agrees closely with the exact 
resonance energy obtained from a phase-shift 
analysis of the continuum wave function I$, . For 

P 
the potential V(r) we have taken the monopole 
part of the two-center potential assuming homo- 
geneously charged extended nucleiS6 with radius 
Y,= 1 . 2 ~ " ~  fm. Owing to the high localization of 
the wave function the effect of the finite nuclear 
extension is not negligible at the close internu- 
clear distances considered here. For instance, 
the 1s energy and width a re  ER =-I. 8533, I?= 5.3 
keV for U-U, and E R =  -2.3597, r =  14.6 keV 
for U-Cf at R = 16 fm for two-point nuclei. Ob- 
viously, the decrease of binding energies leads 
to a substantial reduction of the decay width. 

Using the smoothly cut-off resonance wave func- 
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TABLE 11. Energy and width of the resonance in the 
si /z  positron continuum of the quasimolecules U-U and 
U-Cf, calculated in monopole approximation for exknded 
nuclei. E „  and I? are determined by a phase-shift anal- 
ysis of the continuum @ E ,  ER and rR are  defiied by Eqs. 
(4.30) and (4.26) using the truncated potential (4.29). 

System R (fm) ~ „ ( m c ' )  

tion +, defined by (4.30) with potential (4.29) we 
have constructed the modified continuum 6, . 
We have numerically integrated the inhomog<- 
neous Dirac equation (4.14) with y"' = 0 and Y ' ~ '  = 1 
(the resu l t  is independent of this  special  choice) 
and obtained f r o m  the superposition (4.15). 
The amplitude of the wave function was normalized 
to the analytic s o l ~ t i o n ~ ~  a t  r =  5000 f m .  As an 
example, Fig. 3 shows the la rge  and smal l  com- 
ponents of a t  resonance energy and the cut-off 
wave function 9, (dotted lines).  The lower par t  
of the figure displays the modified continuum 6 ,  

P 
which shows no resonance behavior. When study- 
ing the proper t i es  of the modified continuum i t  is 

FIG. 3. Upper part: The large and small component 
ul and u 2  of the si12 continuum as in Fig. 2. The dashed 
lines indicate the resonance wave function aR (not 
normalized) as  defined by Eq. (4.30). Lower part: The 
modified continuum $,„. 

interest ing to compare  the phase shifts of @,o and 
in the vicinity of the resonance. F o r  the U-U 

sy&em a t  R = 16 fm, Fig.  4 demonstrates  the 
absence of any s t ruc ture  i n  the phase shift  5 ,  
while 6 sharply increases  by n a t  E = E„,. Thus 
the resonance has been completely eliminated 
f r o m  the continuum. Also shown in Fig.  4 is the 
"resonance excess" of the wave function + E h  de- 
fined a s  the rat io  between the maximum an& 
asymptotic value of ul(r) ,  the l a rge  component of 
the radial  wave function. The narrow Breit- 
Wigner-like maximum of this rat io  charac te r izes  
a sharp  resonance, i t s  high value is Support f o r  
the concept of defining a quasibound s ta te  by cut- 
ting off 

Part icular ly important  a r e  the resul ts  f o r  the 
decay width of the s ta te  +, a s  expressed by the 
squared nondiagonal mat r ix  element  of the Ham- 
iltonian a t  energy E = E„„ cf. Eq. (4.26). The 
values of I? were  found to be  largely independent 
of the detai ls  of the cut-off procedure fo r  a,. 
Figure 5 shows the curves  r ( R )  fo r  the sys tems  
U-U (2 = 184) and U-Cf (2 = 190). Note the s t rong 
decrease  of I? with growing two-center distance 
and the high-Z dependence. This  implies  that i t  
will be  necessary  to  study close collisions of very 
heavy sys tems  i f  any effects  of the spontaneous 
decay of the resonance a r e  to  be observed. 

The projection method is substantially supported 
by the resu l t s  of a d i rec t  phase-shift  analysis  of 
the continuum Q E p .  Table I1 gives the values of 
I? f o r  severa l  internuclear  dis tances K. The 

FIG. 4. Analysis of the resonance in the negative 
energy sl12 continuum in the U-U quasimolecule at R 
=16  fm. Upper part: The ratio of the maximum and 
asymptotic value of ul. Lower part: The phase shift of 
@,+ and the original and modified continuum. 



FIG. 5. Decay width i' in keV of the l s u  resonance in 
the system U-U and U-Cf as a function of internuclear 
distance R ,  calculated in monopole approximation. 

widths obtained from the two methods a r e  in very 
good agreement. Since the decay width r 
= 2n((JEns(H 1 6,) I provides an adequate descrip- 
tion of the positron emission process only in the 
limit of infinite collision time we have to study 
the properties of the coupling matrix elements 
(OE, I H 16,) and (4, I B / B R  I 6,) in more detail. 

P 
Figure 6 shows the decay matrix element a s  a 
function of positron energy for  the systems U-U 
and U-Cf. The increase with two-center distance 
R, taken a s  a fixed parameter  for  each curve, 
has been noted already in  the special case of the 
width. Aside from the Coulomb repulsion effect 
a t  smal l  kinetic positron energies the curves 
show a broad maximum. The values at  resonance 
energy (Ep= E„,) a r e  well defined. The detailed 
behavior of the energy dependence, however, in 
particular, the change of sign at  high energy, 
depends rather sensitively on the employed cut- 
off procedure for  6,. 

The Same is true for  the radial coupling 
I a/aR I 6,) between resonance state and posi- 

t ron continuum. The variation of the matrix ele- 
ments with two-center distance i s  shown in Figs. 
7(a) and 7(b) for  the two systems under consid- 
eration. The matrix elements have been calcu- 
lated by numerical differentiation of the wave 
function 6,. In contrast  to the subcritical situa- 

FIG. 6. The coupling matrix elements ( $ E p l ~ I  + R )  as 
a function of positron energy Ep for the systems U-U 
and U-Cf. 

tion the Hellmann-Feynman identity i s  not appli- 
cable directly since 14 ) and 16,) a r e  not eigen- 
states of the same Hamiltonian. 

The value of (4, 1 ?)/BR I 6,) joins smoothly with 
(mEP 1 a/üR 6,) a t  the cri t ical  distance R = Rcr. 
This had been postulated a t  the outset a s  a crite- 
rion for  the suitability of the projection method. 
While the matrix elements increase monotonically 
in the subcritical region, they reach a maximum 
and fall off again a t  smal l  internuclear distance 
R.  The position of the maximum shifts to smal ler  
R a s  the positron kinetic energy increases.  It 
seems to be correlated, but not identical, with 
the distance where the resonance energy c ros ses  
the energy of the positron state under considera- 
tion. Except for  the matrix elements joining < P R ,  
all further couplings to the modified continuum 
QJEp show no structure,  again demonstrating that 
the resonance has 'been successfully extracted 
from the continuum. To perform calculations of 
positron creation, knowledge of the radial cou- 
pling from qEp to higher bound and continuum 
states is required. In calculating the matrix ele- 
ments (@. I B / B R  I 6,) and (qEp( B/BR I aR),  numeri- 
cal differentiation of the resonance wave function 
was required. The numerical differentiation of 
JEp  can be avoided by using a modified form of 
the Hellmann-Feynman identity. We take the 
matrix element of the commutator [ 8 / 8 ~ ,  H] 
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FIG. 7. The radial coupling matrix elements 
(qBBla/a R I  @,) as a function of internuclear distance 

R for the Systems U-U [part (a)] and U-Cf [part (b)]. 

= a H / a R  between the states (4, I and (6Ep) .  Use 
of (4.9) leads to 

(4.31) 

with the abbreviation V g p =  (G, I H I In addi- 
tion to the usual 8 H / 8 R  te rm this expression con- 
tains a correction proportional.to the decay ma- 
t r ix  element V E p  and a nonorthogonality modifica- 

tion. Numerically the f i r s t  two t e rms  on the rhs  
of (4.31) were found to be of the Same order,  
while the overlap correction amounts to less  than 
10%. It will be neglected in the following calcu- 
lations. The radial coupling among the states of 
the positron continuum can be treated in a similar  
manner. The resulting identity reads 

A certain problem of the presented projection 
formalism is the requirement of orthogonality 
between the resonance wave function @, and the 
states @„ (4, I@,)= 0. ~ o r  an arbitrary choice 
of @, this condition will not be satisfied exactly. 
When the operators P and Q of Eq. (4.7) a r e  not 
orthogonal projectors, the subsequent derivations 
entail an approximation. The problem might be 
circumvented by orthogonalizing 6, to all s tates 
@ „  e .  g. ,  by Schmidt's procedure. This is hardly 
practical, however, since the se t  $, contains the 
continuum of electron states G E e .  Alternatively 
the states 4, might be treated in the Same way 
a s  the 4, so that only @, remains in Q space. 

P 
The higher states then will be modified to a se t  
+, satisfying the analog of the inhomogeneous 
Dirac equation (4.9). This would lead to addi- 
tional nondiagonal couplings through the Hamil- 
tonian H. 

In the present work we will neglect all e r r o r s  
introduced by the nonorthogonality (@, I aR) .  For 
the resonance state @, defined according to 
(4.29), the overlap to higher nsu bound states 
was found to be smal ler  than 1 X 10-' in the worst 
case (U-Cf a t  R  = 16 fm). The sum (C, 1 (@, 1 @,) 1 
+J d ~ ,  1 1 @,)I 2)"2 did not exceed 2 X 10". The 
corresponding overlap of the modified continuum 
states $ E p  can be reduced to (@, I G,) using (4.9): 

According to the orthogonality assumption the 
coupling matrix (2.10) will be assumed anti- 
Hermitian. Otherwise the variable overlap ma- 
tr ix had to be included in the coupled differential 
equations, See (2.8). 

V. NUMERICAL RESULTS 

The formaiism developed in Secs. I1 and N has  
been applied to caiculate positron emission in 
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various heavy-ion-collision processes.  The re -  
quired amplitudes entering (2.22)-(2.24) were 
calculated both in time-dependent perturbation 
theory up to  second order  and by numerical solu- 
tion of the coupled differential equations (2.7). in 
the following we will f i r s t  discuss the approxi- 
mations inherent in our  model and then briefly 
discuss the perturbative results .  The main em- 
phasis  will be placed on the subsequent presen- 
tation of the coupled-channel calculations for  pos- 
itron creation in both subcritical and supercri t ical  
collisions. 

A. Approximations 

In order to  a r r i ve  at numerical resul ts ,  several  
approximations have been applied to the semi- 
classical  quasimolecular model under discussion. 
They a r e  a s  follows. 

(1) While the (nonseparable) two-center Dirac 
equation has  been solved by Müller et  al. for  
bound  tate es,^^-^^ no solutions a r e  available at  
present for the relativistic molecular continuum. 
Detailed comparisons of binding energies and 
coupling matrix elements have shown, however, 
that up to  internuclear distances > 500 fm the in- 
ner-shell s tates  a r e  well described by restr ict ion 
to the 1 = 0  part  in a multipole expansion of the 
two-center potential.61 Even for not too asym- 
metric  heavy-ion systems,  (2, - 2, I /(z, +Z,) 
< 0.2 the monopole t e r m  was found to  be dominant. 
Fo r  the spherically symmetric  problem, both 
bound and continuum s ta tes  a r e  easily generated. 
Therefore al l  calculations presented in this  paper 
will be done by use of the monopole approximation. 
Owing to  the spherical symmetry of V,(r,R), ro- 
tational coupling ac t s  only within angular momen- 
tum multiplets and does not give r i s e  to excita- 
tions. Also electron promotion cannot be de- 
scribed by the monopole approximation. 

(2) The calculations a r e  restr icted to K = -1 and +1 
s ta tes  (ns„, and np„,). Both s e t s  a r e  decoupled 
since they have different parity. They a r e  expec- 
ted t o  be the dominant channels on theoretical 
grounds, since in the superheavy systems under 
consideration the wave fpnctions with / K 1 = 1 a r e  
most severely distorted by the strong potential, 

avoided by introducing electron translation fac- 
tors ,  which asymptotically switch over the basis  
to  "traveling orbitals' ' correlated to  either of the 
moving nuclei. Various problems a r e  associated 
with this procedure, especially when continuum 
s ta tes  a r e  involved. Fo r  a detailed discussion 
compare the work of H e i n ~ . ~ ~  

In the present calculations we have simulated 
translation effects in a crude manner: All coup- 
ling matrix elements a r e  damped off at separa-  
tions R - 1500, . . . ,2000 fm using a Gaussian fac- 
t o r .  Compared to  the nonrelativistic case (e.g., 
p-H collisions) relativistic quasimolecular sys- 
t ems  exhibit a s trong maximum of the radial 
coupling matrix elements at  small  R where most 
of the excitation takes place. Therefore trans- 
lational effects should be somewhat less  critical 
here.  The resu l t s  of Ref. 68 indicate, however, 
that future calculations have to carr ied out to 
la rger  distances and employ more real is t ic  as- 
ymptotic corrections. 

(4) We neglect all e f fec ts  due to  the electron- 
electron interaction. RiHan et al.=' have argued 
that the relaxation t imes  for the nondiagonal part  
of this  interaction i s  l a rge r  than the collision 
time. A reliable assessment of the diagonal part ,  
i .e.,  screening effects, i s  difficult since the elec- 
tron shells a r e  dynamically excited in the Course 
of the collision and the outer electrons will not 
be adiabatic. Fully relaxed molecular Hartree- 
Fock calculations, which have been performed 
recently for superheavy s y s t e m ~ , ~ ~  therefore may 
overestimate the effect. 

Investigations of inner- shell and positron excita- 
tion in the framework of the presented model us- 
ing a simple Thomas-Fermi screening function 
lead to  somewhat enhanced probabilities without 
change of the general c h a r a c t e r i ~ t i c s . ' ~  A sub- 
stantial reduction of the cri t ical  d i s tances58~59~72~73 
due to  electron screening has been found in Ref. 
74 from relativistic Hartree-Fock-Slater calcu- 
lations in the monopole approximation. The re -  
su l t s  presented below therefore a r e  to  be consid- 
ered to give an "upper bound" for  the influence of 
level diving in supercri t ical  collisions. 

B. Tiedependent  perturbation theory 
leading to  large coupling matrix elements. Assuming weak coupling the solutions of the sys- 

(3)  It i s  well knownßz that the quasimolecular tem of differential equations (2.7) may be reduced 
(PSS) model suffers  from spurious asymptotic to  simple t ime integrals. Taking a , , - 1  and a „  
a/aR couplings: Since the basis  s ta tes  a r e  cal- << 1 for i # j  the amplitude at  the r h s  of (2.7) i s  
culated under the assumption of fixed nuclei, they approximated by constant arid we obtain the 
do not satisfy the cor rec t  boundary conditions. f i rs t-order  resul t  
With respect  to this  basis ,  the nonvanishing nu- 
c lear  velocity k induccs t iansi t ions at  a rbErar i ly  = - [ ( d t l ( m j  / -& +iX/ $ $ e - i [ x f ( t ' ) - x j i t ' i l  . 
large distance. This  problem has been discussed 
extensively in the l i t e r a t ~ r e . ' ~ - ~ '  It may be (5.1) 
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Thus the transition amplitude i s  a quasi-Fourier 
t ransform (generally with variable frequency) of 
the coupling matrix element between the initial 
and final s tates.  Since the integrand depends 
parametrically on t ime via R ( t ) ,  the result  i s  
sensitive to the nuclear trajectory. 

Pa i r  production according to (5.1 ) in the quasi- 
molecular monopole model was f i r s t  calculated 
in Ref. 75. Owing to the deformation of the con- 
tinuum states at  small  internuclear distance, 
ra ther  high production r a t e s  and, above al l ,  a 
very strong dependence on nuclear charge ae' 

(2, + 2,)'' was predicted. 
The general s tructure of the Fourier  integral 

(5.1) can be used for a qualitative understanding 
of the excitation process a s  was f i r s t  pointed out 
by Bang and H a n ~ t e e n . ' ~  Fo r  instance, the typical 
collision frequency will be of the order W = V  /Ro, 
where R, is the distance of closest approach and 
V the bombarding velocity. The integral (5.1) can- 
not be done analytically even in the monopole mod- 
e l  but an  approximate Solution was given by Refs. 
76. Similar, but slightly modified solutions were 
later  presented by 77, and 78 (See also Ref. 79). 
It turns out that the transition probability depends, 
in good approximation, exponentially on the rat io 
AE;,/EW = qj R,/EU, where AE:, i s  the transition 
energy a t  distance R,. Upon integration over the 
energy of the ejected electron, scaling laws can 
be deduced for  the excitation probability a s  a func- 
tion of impact parameter and, after a further inte- 
gration, for  the excitation Cross section. 

The scaling behavior is well reflected in the ex- 
perimental data on K-hole f ~ r m a t i o n ' ~ - ' ~  and pos- 
itron c r e a t i ~ n . ' ~ - ~ '  It gives insight into the kine- 
matic aspects of the excitation mechanism. One 
has  to keep in mind, however, the failure of per- 
turbation theory to account for the observed large 
excitation ra tes .  This i s  attributed to multistep 
processes a s  discussed below. 

Before we turn to the full coupled-channel cal- 
culations we briefly discuss the extension of per- 
turbation theory. Equation (5.1) describes tran- 
sitions between the positron continuum and states 
above the F e r m i  level, i.e., higher bound s ta tes  
and continuum electrons. Inner-shell s tates do 
not contribute in f i r s t  order.  Since the investi- 
gation of the role they play in the positron produc- 
tion process is a main goal of th is  work we have 
pushed the analysis to higher (at least second) 
order .  By successive approximation the two- step 
amplitude (intermediate state k )  reads  

The total transition amplitude i s  given by the co- 
herent sum over all contributions 

In th is  approach we have calculated pair  creation 
in subcritical systems in the angular momentum 
channels K=-1 (s„,) and ~ = + 1  (P„,). Direct and 
two-step transitions via the three innermost bound 
states for each K have been added. An inclusion 
of continuum intermediate states would mainly re-  
sult in a shift of the electron spectrum.*l The re-  
sul ts  were given in Refs. 92 and 26 and only the 
main features shall be summarized here.93 

(i) s (K = -1) and P „ ,  (K = +1) waves contribute 
roughly equally t o  positron production. 

(ii) While the amplitudes a$ (m) a r e  purely 
imaginary (provided the phases X, a r e  Chosen 
symmetric with respect  to t = 0 ,  the turning point 
of the trajectory), the second-order amplitudes 
a(f],,(.n) will have a rea l  part.  The relative phase 
angle was found to increase with the binding en- 
ergy of the intermediate state k." This is il- 
lustrated in Fig. 8 for the six innermost s and 
p l I2  states in a central 5.9 M ~ V / U  Pb-Pb col- 
lision. The displayed amplitudes have to be ad- 
ded coherently, K = -1 and +1 separately. 

(iii) Although being of higher order,  the con- 
tributions of the 1s and 2p„, s tates a r e  compar- 
able in magnitude to the direct  pair-creation pro- 
cess .  They grow particularly fast with nuclear 
charge and constitute the kargest single com- 
ponents for systems heavier than Z, +Z, - 175. 

(iv) The kinematic characterist ics  of direct and 
two-step excitations do not differ much. In both 
cases  the same amount of energy has to be trans-  
ferred in a similar  region of space and t ime.  

Positron amp(itudes 

FIG. 8. The complex pair formation amplitudes in a 
central 5.9 MeV/u Pb- Pb collision, calculated in first- 
and second-order perturbation theory including several 
intermediate states. Left half: s i lz  waves, right half: 
~ 1 1 2  waves. 



C. Coupled-channel calculations 

The perturbative calculations briefly reported 
in Sec. V B describe much of the physics involved 
in the excitation process.  The strong dependence 
on impact parameter  and collision energy could 
not be understood without use of the quasimolecu- 
l a r  picture. The large magnitude of the excitation 
r a t e s  and their Z dependence a r e  characteristic 
for relativistic effects in the wave function, in 
particular the loss of any atomic length scale 
other than the nuclear separation distance. 

The above-mentioned growing importance of the 
second-order t e rm in (2) for heavy systems al- 
ready indicates, however, that perturbation the- 
ory i s  of limited validity. Furthermore the re-  
maining discrepancy between p r e d i ~ t e d ~ ~ ' ' ~  and 
o b ~ e r v e d ' ~ - * ~  K-vacancy probability may be ex- 
plained in this way. Owing to the large values of 
the radial coupling matrix elements at  small  in- 
ternuclear distance multistep excitations cannot 
be neglected. As shown in Ref. 41 a coherent su- 
perposition of the various contributions gives an 
increase of P„ by a factor of typically 3 to 5 
over f irst-order direct-ionization calculations, 
in general agreement with experiment. All multi- 
s tep processes a r e  properly incorporated if the 
amplitudes a,, a r e  obtained by direct solution of 
the coupled differential equations (2.7). 

We have solved the system of differential equa- 
tions including up to eight bound states and -15 
states in the upper continuum, separately for  
K = + l  and -1. The integration was performed 
with a Standard Hamming predictor-corrector 
routine taking about 1500 steps in time. It proved 
advantageous to employ the symmetry relation 
(2.14) (valid for  time-symmetric nuclear trajec- 
tories)  and compute 

Since the probability for  positron excitation is  
small  compared to unity, it i s  sufficient to include 
only one state a t  a time when varying E„ i.e., the 
lower continuum can be coupled in perturbation 
theory . 

Now we will anaiyze coupled-channel caiculations 
in four different heavy-ion-collision systems,  
Pb-Pb, Pb- U, U- U, U-Cf with the total charges 
Z, +Z, = 164, 174, 184, and 190. For  reference, 
Fig. 9 shows the binding energies used in the cal- 
culations for  the two lowest s tates.  Table 111 
gives the predicted total probability for  positron 
production in head-on collisions (b =O). The im- 
pact energy per nucleon was kept constant at  
E„ = 5.9 M ~ V / U ,  corresponding to a nuclear vel- 
ocity of about v/c-0.113. The table l is ts  the re-  

Two- Center Distance R(fm) 

FIG. 9. Energies of the l s u  and 2p1,  2,, states as a 
function of internuclear distance R in the systems Pb-Pb, 
Pb-U, U-U, and U- Cf, calculated in monopole approxi- 
mation for extended nuclei. The latter two systems are 
supercritical. 

sul ts  for various positions of the Fe rmi  level: 
F = O  corresponds to fully stripped nuclei, for 
P = 3 the three lowest nso and npl, „ s ta tes  a r e  
occupied before the collision, and for F = N  only 
the upper continuum i s  available for  excitation 
of the electron. (Of Course, bound states still  
can act a s  intermediate s ta tes  in the excitation 
process.) Fo r  comparison also the direct  plus 
two-step perturbative results  described in the 
last  paragraph a r e  shown for the two lighter sys- 
tems.  In the Same manner Table IV gives the 
total Cross sections oe' in units of mb. 

An analysis of the data contained in these ta- 
bles leads to the following observations: (1) The 
results  obtained by the coupled-channel method 
a r e  la rger  compared with perturbation theory. 
The enhancement factor i s  smaller ,  however, 
than that found for  inner-shell hole production. 
(2) The production r a t e s  increase very fast  with 
total nuclear charge, flattening somewhat for  the 
highest-Z values. If parametrized by a power law 
(2, +Z,)" the power takes values of 20 down to 13 
( F = 3 ) .  If the distance of closest approach R, i s  
kept fixed instead of the impact velocity, n be- 
comes still  l a rger .  (3) In collisions of bare nu- 
clei (F=O) positron production i s  increased by up 
to two orders  of magnitude. Here also the Z de- 
pendence i s  extremely steep (n = 29). Mainly re-  
sponsible for  this effect i s  the contribution of the 
1s state which in normal collisions ( F  >O) i s  sup- 
pressed due to the small  K-vacancy probability. 
If the K shell i s  empty it becomes the dominant 
final s tate for pair production. This clearly re-  
flects the strong coupling between the 1s state and 
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TABLE 111. ~robabil i ty  p e C ( 0 )  for positron emission calculated by Solution of the coupled- 
channel equations for head-on collisions of Pb-Pb, Pb-U, U-U, and U-Cf with bombarding 
energy 5.9 ~ e V / u .  Compared a re  the results assuming different positions of the Fermi level 
F and values from first- plus second-order perturbation theory. 

zi+z,= 
F 164 174 184 190 

0 4 .26 ( -4 )  2.37 ( -3)  1.18 ( -2)  2.83 ( -2)  
3  4 .03  ( -5 )  1.30 ( -4)  3.69 ( -4)  5.62 (-4)  
N 3.35 ( -5 )  1.05 ( -4)  2.68 ( - 4 )  4.08 ( -4 )  

Perturbation 
theory 2.8 ( -5 )  8.5 ( - 5 )  

the ant ipart ic le  continuum which it approaches and 
even en te rs  in the supercr i t ical  region. 

In a l l  c a s e s  investigated the  channels K=-1 and 
+1 contribute about equally t o  the total resul t .  In 
cons t ras t  t o  situations where perturbation theory 
is valid, a n  ana lys i s  of the  coupled-channel r e -  
su l t s  to  determine individual contributions i s  l e s s  
sat isfactory.  Since a l l  bound and positive energy 
continuum s ta tes  mutually a r e  strongly coupled, 
it i s  not weil justified to  separa te  singie leveis  o r  
interact ions.  Nevertheless ,  we have made some 
res t r i c ted  calculations, leaving out p a r t s  of the 
coupling. To be specific, we give some resu l t s  
f o r  5.9 MeV/u cen t ra l  collisions of Pb-Pb .  The 
positron production probability (in the s„, chan- 
nel only) is Pe '=2.1 X 10-5 f o r  the F e r m i  surface 
F = 3.  In comparison to th i s  resul t  of the fully 
coupled calculation we obtain (i) 31% if only d i rec t  
t ransi t ions to  the upper continuum a r e  included, 
(ii) 17% f r o m  the 1s s ta te  alone, no higher bound 
s t a t e s  included [this corresponds t o  the two-step 
p r o c e s s  of Eq. (5.2)], (iii) 49% f rom the 1s s t a t e  
alone, which, however, i s  fully coupled t o  the 
higher s ta tes ;  the increase  of l s a  vacancy pro- 
duction shows up in the positron r a t e ,  and (iv) 
68% f r o m  a fully coupled calculation excluding 
the  1s s ta te .  

F u r t h e r  resu l t s  of the model a r e  contained in 
t h e  following figures: F igure  1 0  shows the energy 
s p e c t r a  of positrons d ~ / d ~ ,  produced in 5.9 

TABLE IV. Same as Table 111 for the total positron 
Cross section ae' in units of mb. 

0 4.5 24.0 120 300 
3 0.27 0.87 2.2 3 .4  
N 0 .22  0 .63 1.55 2 .4  

Perturbation 
theory 0.20 0.52 

M ~ V / U  head-on collisions ( F = 3 ) .  As i s  well 
known, the emission of low-energy posi t rons is 
suppressed by Coulomb repulsion while a t  high 
energ ies  the spec t ra  fall  off exponentially in an- 
alogy t o  the s p e c t r a  of 6 e lectrons.  The shapes  
d o  not differ qualitatively f r o m  the perturbative 
resu l t s .  Obviously they a r e  practically indepen- 
dent of the charge of the collision sys tem except 
fo r  a minute shift  of the maximum which l i es  a t  
about 450 keV kinetic energy. F igures  l l ( a )  and 
l l ( b )  gives the impact-parameter  dependence of 
positron production. The absc i ssa  i s  the dis tance 
of c losest  approach R„, which is related to  impact  

1ö3 1 I - 

E I A  = 5 9  M e V l u  

1 0 b ~ i ~ ' ~ ~ " l ~ ~ ' ~ l ~ ~ '  500 1000 1500 EJkeV) 

FIG. 1 0 .  Energy spectra of positrons created in 5.9 
~ e V / u  head-on collisions of Pb-Pb, Pb-U, U-U, and 
U- Cf. The results a re  calculated in the coupled-channel 
approach assuming initial occupation up to the states 
3 s u  and ( F = 3 ) .  
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pe+ 1 EIA = 5.9 MeV/ "  1 

FIG. 11. (a) Emission probability of positrons in 5.9 MeV/u collisions as a function of distance of closest approach 
Rd, (F= 3) .  (b) Same as (a) for collisions of totally stripped heavy ions. The large enhancement is mainly due to the 
contribution of the l su  state. 

parameter  b by R„, = a l l +  (1 + (b/a)2)"2]. A nearly 
perfect exponential decrease of the curves i s  
noted. The high value of the slope i s  understand- 
able in t e r m s  of the energy transfer  required to 
produce a pair. Therefore the impact-parameter 
dependence i s  much weaker in the case F = 0 
[Fig. l l ( b ) ]  where the gap between the lowest 
empty state ( l so)  and the positron continuum be- 
comes small  or  vanishes. For  the collisions with 
initially occupied inner shells  the slope of 
pe+(~,, , , , )  becomes steeper for  the heavier systems.  

D. Discussion of the results 

The results  displayed in the last  two subsections 
demonstrate remarkable features of the pair- 
production mechanism in "slow" collisions of 
highly charged nuclei. in particular, the la rge  
excitation ra tes  and their high sensitivity on total 
nuclear charge in the region Z, + Z, = Z„, a r e  
characterist ic  for  the action of the time-depen- 
dent strong Coulomb field. 

One question must be studied in more detail: 
What i s  the influence of the "diving" of the 1s level 
in supercritical collisions on positron production? 
The energy spectra and impact-parameter depen- 
dence, depicted in Figs.  10 and 11, have already 
shown that our theory does not predict any drast ic  

change of observables at  the border of the super- 
critical region, but ra ther  a smooth increase of 
production r a t e s  with Z.  This s eems  to be at  
variance with the results  of Sec. IV C, where an  
additional coupling between 1s state and positron 
continuum emerged. 

To study i ts  influence more  closely we have 
performed calculations where the matrix element 
( + E p I ~ I  G R )  was artificially switched off. Figure 
1 2  compares the resulting positron emission 
probabilities in U-U and U-Cf collisions calcu- 
lated with and without the spontaneous coupling. 
At large scattering angles (small impact para- 
meters)  the values of pe+ a r e  significantly re-  
duced when this coupling is omitted. This be- 
comes even more obvious in the positron spectra 
which a r e  shown for head-on collisions in Fig. 
13. The dashed curves a r e  much depressed in 
the region of positron energies where, in the 
supercritical phase of the collision, the resonance 
i s  located. in the heavier system the shape of the 
spectrum is also drastically altered. 
In the f i r s t  place, this result gives confidence 

in the employed projection method; the superpos- 
ition of two couplings which by themselves lead 
to totally different results  produces spectra and 
excitation rates,  which a r e  a smooth continuation 
of the corresponding quantities in the subcritical 
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0 L0 80 120 160 
Qc.m 

FIG. 1 2 .  Probability of positron emission in the si l2 
channel as  a function of c.m. scattering angle in colli- 
s i o n s o f U - U a t 2 a = 1 6 f m a n d U - C f a t 2 a = 1 7 f m .  Full 
lines: Fully coupled calculation. Dashed lines: The 
spontaneous coupling (&JHJ 4R) has been omitted. 

region (cf. F igs .  10 and 1;). An explanation f o r  
th i s  resu l t  can be gained by looking a t  the s t ruc-  
t u r e  of the coupling mat r ix  e lemenis  af a function 
of t ime.  In Fig.  1 4  the values of (@,#I Ra/aR I a,) 
and ( I $ , ~ ~ H I @ ~ ) ,  E # = - 2 ,  a r e  d r a w n f o r  a head-on 
U-Cf collision with 2a = 18  f m .  F o r  comparison 
the corresponding radial  coupling in Pb-Pb col- 
l is ions is included in the graph. Obviously, the 
spontaneous coupling is compensated by a cor-  
responding reduction of the 1s-induced contribu- 
tion. Both couplings have to be added coherently 

1 
1 - 2  - 3  - L  Z 3 - L  

~ , imc ' i  E , ~ ~ c ~ I  

FIG. 1 3 .  The positron spectra in U-U and U-Cf colli- 
sions. Meaning of the curves as  in Fig. 1 2 .  

-010 C 
FIG. 1 4 .  Matrix elements of the induced and spontane- 

ous positron coupling as  a function of collision time in 
central collisions of U-Cf, 2 a  = 18 fm. For comparison, 
the dashed line shows the radial coupling in a Pb-Pb 
collision (multiplied by a factor of 10). 

[with a relat ive phase factor  of i, cf. (4.25)], 
leading to excitation r a t e s  which d o  not differ 
qualitatively f r o m  the subcri t ical  resu l t s .  

Th is  observation is in general  agreement  with 
the  notion of a "dynamical width" which may be 
associated with a collision t ime  T by the uncer- 
tainty principle i'„ = E / T  and which leads to  a 
smooth t ransi t ion between subcri t ical  and super-  
cr i t ical  collisions. The shor tness  of T prevents  
any sudden threshold effects and in part icular  
precludes the existence of sharp  s t ruc tures  in the 
positron s p e c t r a  near  the diving energy E„(R„,). 
A proof of supercr i t ical i ty  of a given collision, 
therefore,  according to our  calculations will not 
be possible by the observation of qualitative fea- 
t u r e s  in  the excitation r a t e s .  Rather ,  a quantita- 
t ive analysis  is needed, including the r a t e  of l s a -  
vacancy formation, which i s  sensitive to  t h e  bind- 
ing energy . 

A unique s ignature f o r  spontaneous positron 
production could be gained in collisions with pro-  
longed interaction time. Rafelski,  Müller ,  and 
Gre iner  suggested the use  of deep inelastic nuclear  
c o l l i ~ i o n s ~ ~  to keep the nuclei in close contact f o r  
s o m e  delay t ime  T. While the radial  coupling i s  
s m a l l  during this  period, k < < U , ,  the decay coup- 
ling (J„ @,) remains  constant a t  i ts  maximum 
value. This  l eads  to a n  increase  of positron- 
creat ion r a t e s  a s  a function of T. In the (hypo- 
thetical) l imit  of total fusion to a long-lived 
supercr i t i ca l  compound nucleus, a positron line 
with the natural  decay width (4.26) would emerge.  

Coupled-channel calculations within the f rame-  
work of the theory developed in this paperg7 have 
lead t o  the conclusion, that t ime delays in the 
region of 2 , .  . . , 3  X 10-'' s a r e  required to get a 



clear distinction of the diving p r o c e s ~ . ~ ~  If the 
background due to nuclear excitation is separable, 
and if collisions with sufficiently long reaction 
times can be selected, this experiment could give 
an unequivocal answer to the question of the de- 
cay of the neutral vacuum. 

E. Comparison with experiment 

Since beams of very heavy ions a t  energies 
close to the Coulomb barr ier  have become avail- 
able a t  GSI (Darmstadt), a number of experiments 
have been performed to study positron production 
in highly charged collision systems. The search 
for  such processes has been largely successful. 
A major problem in analyzing the experiments 
consists in the background originating from nu- 
clear processes. Already well below the barr ier  
the nuclei can be excited by Coulomb excitation. 
Photons with energy larger than 1022 keV can 
undergo pair conversion. Although this process 
takes place long after  the collision (= 10-l3 s), i t  
cannot be distinguished experimentally from the 
quasirnolecular mechanism by ordinary methodslW 
F o r  nuclei with a simple level structure (e.g., 
'08pb) the Coulomb excitation can be calcuiated. 
The resulting pair  creation can be deduced from 
the theoretically knownlol conversion c o e f f i c i e n t ~ ? ~ ~  

Otherwise one has to measure the y - s p e c t r ~ m ' ~ ~  
andfold it with the conversion coefficient. Here the 
y-ray multipolarity has to be known o r  assumed. 
Monopole conversion cannot be handled by this 
method. The procedure was tested in collisons 
with lighter targets where it quantitatively accounts 
for the total observed positron production. No 
significant contribution of atomic positrons i s  
expected in these collisions. Beginning in the re-  
gion Z ,  + Z 2 2  160 a l l  experiments have found an 
increase which could not be explained by nuclear 
conversion. 

We will now compare the experimental data 
published s o  f a r  with the predictions of theory. 
We adopt the coupled-channel results, assuming 
F= 3 ,  i.e., the states above 3su and 4 p d „  a r e  
empty (this choice should give an upper bound for 
the production rates). Figure 15 shows the result 
of Kozhuharov et a18' for three collision systems 
Pb-Pb, U-Pb, and U-U, a t  5.8 M ~ V / U ,  measured 
with an orange-type ß spectrometer. The prob- 
ability of positron emission in a narrow energy 
window around 490 keV i s  shown a s  a function of 
projectile center-of-mass (c.m.) scattering angle. 
Here and in the following figures projectile and 
target nuclei a r e  not distinguished. The theoreti- 
cal  curves therefore have been symmetrized with 
respect to forward and recoil scattering. The 
shape of the theoretical curves is in good agree- 

FIG. 15. Positron-production probability in an energy 
window E,= 490 f 50 keV as a function of projectile scat- 
tering angle in 5.8 MeV/u Pb-Pb, U-Pb, and U-U colli- 
sions. Experimental data taken from Kozhuharov et al . 
(Ref. 88). The nuclear background is subtracted. 

ment with experimental data. Also the predicted 
increase of positron production with charge Z = 
Z, + Z ,  by nearly an order of magnitude (while 
A Z / Z  i s  only 12%) is fully confirmed by the mea- 
surement. The absolute magnitude of the theore- 
tical values, however, i s  generally too high. 

In another, independent experiment using a 
solenoidal spectrometer Backe et a1?7*104 obtained 
differential and integrated positron probabilities 
for various impact energies. Figure 16 shows 
Pe'(&,,) for the three systems already discussed 
and in addition for the heaviest accessible system 
U-Cm ( Z =  188). The scattered particle was de- 
tected in a fixed angular window 8„ = 45"* 10" 
s o  that the various values of R „  were obtained by 
variation of the collision energy. The theoretical 
values a r e  symmetrized and averaged over the 
region of impact parameters defined by the ex- 
perimental angular window. 

Again, a general agreement i s  found in the Z  and 
Rh dependence. in particular the Pb-Pb results 
a r e  expiained even quantitatively, in contrast to 
the experiment discussed above. In the heavier 
systems theory again has a tendency to overesti- 
mate the measured data. in addition the experi- 
mental slopes a r e  somewhat steeperthanpredicted. 
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FIG. 16. Positron emission probability for various 
heavy-ion collision systems, drawn as a function of the 
distance of closest approach. The scattered ion is de- 
tected in an angular window 9„=45" I10".  The bom- 
barding energy is varied. ~ a t ä  are taken from Backe 
et a l .  (Refs. 87 and 104). The nuclear bac kground is 
subtracted. 

Such a trend seems  to  be present  a l so  in new ex- 
perimental data?0*105~106 A new generation of 
experiments was se t  up to extract the most sensi- 
tive information: the energy spectra of positrons, 
measured in coincidence with the scattered ions. 
Thei r  knowledge i s  most useful if one wants to 
verify the theoretical predictions o r  find deviations 
hinting to the positron-creation mechanism. Fig- 
Ure 1 7  shows the f i r s t  published positron spectra 
of Backe et al?' for  5.9 M ~ V / U  U-Pd, U-Pb, and 
U-U collisions. The U-Pd (Z= 138) positrons can 
be fully accounted for  by nuclear conversion 
(thin curves). In the system U-Pb the sum of 
background and calculated QED positron ra tes  
(full curve) i s  in excellent agreement with the ob- 
served spectrum. The spectrum of the U-U 
system i s  explained l e s s  closely. Its maximum 
seems  to be shifted to lower kinetic energies. 
Again, such a tendency seems  to be observed in 
severa l  experiments with U-U and U-Cm currently 
under way a t  GSI!~~"~' 

VI. SUMMARY 

We have studied the mechanism of pa i r  produc- 
tion in collisions of very heavy ions within the 
framework of a dynamical theory of excitation 

500 1000 1500 2000 
E ( k e V )  

FIG. 17. Spectra of emitted positrons in 5.9 MeV/u 
collisions measured by Backe et al .  (Ref. 89) in coinci- 
dence with ions scattered in the angular window O„ 
=45" I 1 O 0 .  The spectrum in the lightest system, U-Pd, 
is explained by nuclear pair conversion alone (thin line). 
In the U-Pb and U-U systems the sum of nuclear and 
calculated atomic positron probabilities (heavy lines) is 
shown. 

based on the quasimolecular picture. Massive 
relativistic effects in the wave functions of elec- 
t rons and positrons in su2 and plh states,  caused 
by the coherent action of the Coulomb field gener- 
ated by the two nuclei, a r e  reflected in the excita- 
tion rates. As known already from the process of 
inner-shell vacancy creation, positron formation 
i s  concentrated in a region of close collisions, i.e., 
high impact energies and small  impact parameters.  

The most outstanding result  i s  a very steep 
increase of positron production with nuclear charge, 
which alone makes the experimental observation 
possible against a large background. Contrary to 
the case of light collision systems,  theory predicts 
the sharply growing importance of the inner-shell 
bound states (1s and 2pll,) in the pair-production 
mechanism if the supercritical region i s  approach- 
ed. If prepared empty, the 1s state will be the 
dominant final s tate for  the electron in pair  crea-  
tion since this level interacts strongly with the 
antiparticle continuum in the Course of the collis- 
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ion. 
We have developed a theory which properly takes 

into account the resonance character of the dived 
1s state. The results of our coupled-channel cal- 
culations indicate, that no sharp threshold effects 
a r e  to be expected a t  the border of the super- 
critical region, in accordance with the notion of 
dynamical collision broadening. 

The experiments performed s o  f a r  have con- 
vincingly established the predicted strong increase 
of positron production in close collisions of heavy 
ion systems with very high total nuclear charge 
of heavy-ion systems. There remain some dis- 
crepancies with theory in absolute magnitude, in 
the slope of PC' (b), and, possibly, in the shape 
of the positron spectra. At present it cannot be 
determined whether these differences have ex- 
perimental origins, a r e  caused by the approxi- 
mations employed in the theoretical model, o r  do 
reflect some deviations from the predictions of 
QED which a r e  of principal interest. Future studies 
should lift the approximations discussed in Sec. 
VA and also include effects from field fluctuations 
like vacuum p o l a r i ~ a t i o n ' ~ ~  and self-energy,lo8 
which have been neglected in the present work. 
An unambiguous demonstration of the decay of 
the neutral vacuum may be possible, though very 
difficult, by measuring enhanced positron pro- 
duction in collisions with nuclear contact leading 
to a sufficiently prolonged interaction time. 
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APPENDIX: ELECTRON-POSITRON PAIR 
CORRELATIONS 

To complete the discussion of Sec. I1 in this 
appendix we discuss correlations between pairs 
of emitted electrons and positrons. We will stay 
within the framework of the monopole approxi- 
mation. According to the theory presented above, 
the angular momenta su2 (K = -1) and pd2 ( K  = + 1) 
a r e  the dominant channels. In the experiment, 

the partial waves will not be distinguished. There- 
fore the basic equation (2.24) for pair correlations, 
integrated over the solid angle of the emitted 
particles, has to be supplemented by terms de- 
scribing incoherent coincidences. Assuming 
further, that Spin orientations a r e  not measured 
leads to the result 

Here and in the following the superscripts (+) and 
(-) will denote the channels K = + 1 and -1. The 
f i r s t  term in Eq. (Al) i s  a product of the differen- 
tial excitation rates for electrons and positrons 
and thus describes random coincidences. The two 
remaining terms represent coherent correlations. 
In particular, they contain the direct transition 
between the states E, and E,. In the limit of low- 
excitation rates,  Eq. (Al) reduces to (Setting 
Y =  E,) 

It should be stressed,  however, that this simple 
result is valid only if multiple excitations can be 
neglected. Since inner-shell bound states a r e  
strongly ionized in the collision, the random coin- 
cidences will constitute a large part of the total 
pair correlations. This can make it difficult to 
extract information from doubly differential 
measurements. 

The information contained in the amplitudes a$ 
i s  sufficient to determine also the angular correla- 
tion between emitted electrons and positrons. Its 
measurement has been suggested to obtain addi- 
tional information on thepair-creat ionproce~s." '~~~~ 
To determine the angular correlation, two de- 
tectors have to be placed a t  definite angles so  
$hat they can measure the momentum vectors .. 
ke,k,. In such an arrangement partial waves with 
different angular momentum and parity can inter- 
fere. To derive an expression for the number of 
pairs with electron energy Ee and direction_ke/Lke I 
and positron energy E,, positron direction k$ I kp  I, 
NEp,;,;  „,J,, we have to evaluate Eq. (2.24) using 
number operators for particles (holes) in plane- 
wave states instead of the spherical waves used s o  
far .  The transformation between the se ts  of states 
is a generalization of the Rayleigh plane-wave 
expansion. It takes the form110p111 
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where I km) and I K P )  a r e  plane and spherical 
waves quantized along the axes k  and E ,  D:, 
(52;) is the rotation matrix (2 - 6) for angular 
momentum j = 1 K 1-a, and 6,  denotes the phase 
shift due to the potential. The basis states a re  
normalized according to 

The field operator 'k may be expanded in analogy 
to (2.20) in the basis of plane-wave states @ f  , 

The canonical transformation between the primed 
and unprimed particle and hole operators then, is 
given by (A3), namely, 

T-he labels i and q a re  abbreviations for the sets 
(ki,mi) and ( E q ,  K ~ ,  P>. The number of pairs in 
the plane-wave states i and j then is given by 

N;* = ( ~ ( $ ~ 6 ~ i ? ~ d ~  -i -4-f -i ( F )  

The expectation value of the spherical wave opera- 
tors under the sum can be evaluated in the Same 
manner as in Sec. 11, and leads to an expression 
containing the single-particle amplitudes a„: 

The expression (A7) with (A8) so far  is  valid 
quite generally. Now we will restrict our con- 
siderations to the monopole approximation and 
also neglect rotational coupling, i.e., we assume 
that the amplitudes a„ do not mix between states 
of different K and p. This means K,= K , =  K „  , 
K ~ =  K ~ =  K ~ ,  and P,= pa=  P, ,  , P,= pp,  in the 
first  term of Eq. (A8), and K,= K,= K,,  K ,=  K „  

= K p ,  arid P , =  P a =  P , ,  P,= P „  = P,,  in the exchange 
term. 

Using the relation 

the direct term in (A7), (A8) can be simplified a t  
once: 

This is just the incoherent product of particle and 
hole probability that also appeared in (Al); The 
evaluation of the exchange term 

(All) 

is  more tedious. We give the final result, summed over the spin orientations of electron and positron: 

-C 

Here A is  the relative phase A =  (6;)- 6:-)) - (6:"- 6:") and 0,) is  the angle between k, and k,. 
In perturbation theory (A12) reduces to 

N;,,ij~2(4a)-2(la~,Ei12+ ~ a ~ ~ , , ~ 2 + 2 c o s ~ i j c o s ~ ~ a ~ ~ , E ~ ~  laZ,„ 1 ) .  (Als) 

Upon integration over the angles, the last two equation reduce to (Al) and (A2). 
Equation (Al21 shows, that the emitted pair has an angular correlation that results from the interference 



be tween  K = + 1 and -1 waves .  We d o  not expect,  however,  t ha t  t h i s  effect  wi l l l ead  tos ignif icant  s t r u c t u r e s  
as a function of pos i t ron  ene rgy  in  s u p e r c r i t i c a l  col l is ions .  T h e  p h a s e  shif t  A h a s  to b e  de te rmined  f o r  
the  final wave function. In c o n t r a s t  to the (academic)  p rob lem of monopole pair convers ion  i n  a s t a t iona ry  
s u p e r c r i t i c a l  a tom,  A does  not exhibit  a resonance  behavior  in  the  case of a heavy-ion collision. More-  
o v e r ,  the r e l a t ive  magnitude of the  in te r fe rence  t e r m  i s  smaller than i n  the  c a s e  of p a i r  convers ion f o r  
the  r e a s o n s  d i s c u s s e d  e a r l i e r .  
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