1,875 research outputs found

    Abyssal mixing from bottom boundary effects in Mid-Atlantic Ridge flank canyons

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2010This paper begins to explore a previously neglected mechanism for abyssal ocean mixing using bottom boundary layer dynamics. Abyssal mixing and the associated upward buoyancy fluxes are necessary to balance the sinking of dense waters at high latitudes and to close the global overturning circulation. Previous studies have concentrated on the hypothesis that the primary mechanism for this mixing is breaking internal waves generated by tidal flows over rough topography. However, intriguing observations, particularly from the Brazil Basin Tracer Release Experiment, suggest that mixing in the flank canyons of the Mid-Atlantic Ridge generated when strong mean flows interact with the many sills and constrictions within the canyons may represent a dynamically important amount of abyssal mixing. The energy pathways and mechanisms of this mixing are much less clear than in the case of breaking internal waves. This study attempts to clarify this by suggesting an analogy with an idealized diffusive boundary layer over a sloping bottom. This boundary layer is characterized by up-slope flows powered by the buoyancy flux in the fluid far from the boundary. Here we explore the energy budget of the boundary layer, and find that the diffusive boundary layer provides flows that are generally consistent with those observed in submarine canyons. In addition, we derive the vertical velocity in the far-field fluid, analogous to an Ekman pumping velocity, that these boundary layers can induce when the bottom slope is not constant. Finally, we present both theoretical and numerical models of exchange flows between the bottom boundary and the far-field flow when the bottom slope is not constant. These exchange flows provide a mechanism by which boundary-driven mixing can affect the overall stratification and buoyancy fluxes of the basin interior.I was supported by a NSF Graduate Research Fellowship

    Boundary layer dynamics and deep ocean mixing in Mid-Atlantic Ridge canyons

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013Physical oceanographers have known for several decades the total amount of abyssal mixing and upwelling required to balance the deep-water formation, but are still working to understand the mechanisms and locations—how and where it happens. From observational studies, we know that areas of rough topography are important and the hundreds of Grand-Canyon sized canyons that line mid-ocean ridges have particularly energetic mixing. To better understand the mechanisms by which rough topography translates into energetic currents and mixing, I studied diffusive boundary layers over varying topography using theoretical approaches and idealized numerical simulations using the ROMS model. In this dissertation, I show a variety of previously unidentified characteristics of diffusive boundary layers that are likely relevant for understanding the circulation of the abyssal ocean. These boundary layers share many important properties with observed flows in abyssal canyons, like increased kinetic energy near topographic sills and strong currents running from the abyssal plains up the slopes of the mid-ocean ridges toward their crests. They also have a previously unknown capacity to accelerate into overflows for a variety of oceanographically relevant shapes and sizes of topography. This acceleration happens without external forcing, meaning such overflows may be ubiquitous in the deep ocean. These boundary layers also can force exchange of large volumes of fluid between the relatively unstratified boundary layer and the stratified far-field fluid, altering the stratification far from the boundary. We see these effects in boundary layers in two– and three–dimensions, with and without rotation. In conclusion, these boundary layer processes, though previously neglected, may be a source of a dynamically important amount of abyssal upwelling, profoundly affecting predictions of the basin-scale circulation. This type of mechanism cannot be captured by the kind of mixing parameterizations used in current global climate models, based on a bottom roughness. Therefore, there is much work still to do to better understand how these boundary layers behave in more realistic contexts and how we might incorporate that understanding into climate models.I gratefully acknowledge the financial support of the NSF Graduate Research Fellowship Program and WHOI Academic Programs

    Streptococcus pneumoniae Is Desiccation Tolerant and Infectious upon Rehydration

    Get PDF
    Streptococcus pneumoniae (pneumococcus) is a frequent colonizer of the nasopharynx and one of the leading causative agents of otitis media, pneumonia, and meningitis. The current literature asserts that S. pneumoniae is transmitted person to person via respiratory droplets; however, environmental surfaces (fomites) have been linked to the spread of other respiratory pathogens. Desiccation tolerance has been to shown to be essential for long-term survival on dry surfaces. This study investigated the survival and infectivity of S. pneumoniae following desiccation under ambient conditions. We recovered viable bacteria after all desiccation periods tested, ranging from 1 h to 4 weeks. Experiments conducted under nutrient limitation indicate that desiccation is a condition separate from starvation. Desiccation of an acapsular mutant and 15 different clinical isolates shows that S. pneumoniae desiccation tolerance is independent of the polysaccharide capsule and is a species-wide phenomenon, respectively. Experiments demonstrating that nondesiccated and desiccated S. pneumoniae strains colonize the nasopharynx at comparable levels, combined with their ability to survive long-term desiccation, suggest that fomites may serve as alternate sources of pneumococcal infection

    Senior Recital

    Get PDF

    Genotype-environment associations support a mosaic hybrid zone between two tidal marsh birds

    Get PDF
    Local environmental features can shape hybrid zone dynamics when hybrids are bounded by ecotones or when patchily distributed habitat types lead to a corresponding mosaic of genotypes. We investigated the role of marsh-level characteristics in shaping a hybrid zone between two recently diverged avian taxa – Saltmarsh (Ammodramus caudacutus) and Nelson\u27s (A. nelsoni) sparrows. These species occupy different niches where allopatric, with caudacutus restricted to coastal marshes and nelsoni found in a broader array of wetland and grassland habitats and co-occur in tidal marshes in sympatry. We determined the influence of habitat types on the distribution of pure and hybrid sparrows and assessed the degree of overlap in the ecological niche of each taxon. To do this, we sampled and genotyped 305 sparrows from 34 marshes across the hybrid zone and from adjacent regions. We used linear regression to test for associations between marsh characteristics and the distribution of pure and admixed sparrows. We found a positive correlation between genotype and environmental variables with a patchy distribution of genotypes and habitats across the hybrid zone. Ecological niche models suggest that the hybrid niche was more similar to that of A. nelsoni and habitat suitability was influenced strongly by distance from coastline. Our results support a mosaic model of hybrid zone maintenance, suggesting a role for local environmental features in shaping the distribution and frequency of pure species and hybrids across space

    Genotype-environment associations support a mosaic hybrid zone between two tidal marsh birds

    Get PDF
    Local environmental features can shape hybrid zone dynamics when hybrids are bounded by ecotones or when patchily distributed habitat types lead to a corresponding mosaic of genotypes. We investigated the role of marsh-level characteristics in shaping a hybrid zone between two recently diverged avian taxa – Saltmarsh (Ammodramus caudacutus) and Nelson\u27s (A. nelsoni) sparrows. These species occupy different niches where allopatric, with caudacutus restricted to coastal marshes and nelsoni found in a broader array of wetland and grassland habitats and co-occur in tidal marshes in sympatry. We determined the influence of habitat types on the distribution of pure and hybrid sparrows and assessed the degree of overlap in the ecological niche of each taxon. To do this, we sampled and genotyped 305 sparrows from 34 marshes across the hybrid zone and from adjacent regions. We used linear regression to test for associations between marsh characteristics and the distribution of pure and admixed sparrows. We found a positive correlation between genotype and environmental variables with a patchy distribution of genotypes and habitats across the hybrid zone. Ecological niche models suggest that the hybrid niche was more similar to that of A. nelsoni and habitat suitability was influenced strongly by distance from coastline. Our results support a mosaic model of hybrid zone maintenance, suggesting a role for local environmental features in shaping the distribution and frequency of pure species and hybrids across space

    The inner workings of working memory: Preliminary data from unimpaired populations

    Get PDF
    Wright et al. (2007) tested Persons With Aphasia (PWA) using three N-Back tasks featuring different types of linguistic information – phonological, semantic, and syntactic -- to determine whether Verbal Working Memory (VWM) is a single, united resource.  The current study tested two groups of cognitively normal individuals with the same tasks, as well as an additional vision-focused task, to expand on this previous research and provide a baseline for future studies of WM in PWA.  Results indicated no effects of aging outside of Reaction Times, and significant differences in performance across all types of information except phonological and visual cues

    Paediatric drowning: a standard operating procedure to aid the prehospital management of paediatric cardiac arrest resulting from submersion

    Get PDF
    Objectives: Drowning is one of the leading causes of death in children. Resuscitating a child following submersion is a highpressure situation, and standard operating procedures can reduce error. Currently, the Resuscitation Council UK guidance does not include a standard operating procedure on paediatric drowning. The objective of this project was to design a standard operating procedure to improve outcomes of drowned children. Methods: A literature review on the management of paediatric drowning was conducted. Relevant publications were used to develop a standard operating procedure for management of paediatric drowning. Results: A concise standard operating procedure was developed for resuscitation following paediatric submersion. Specific recommendations include: the Heimlich manoeuvre should not be used in this context; however, prolonged resuscitation and therapeutic hypothermia are recommended. Conclusions: This standard operating procedure is a potentially useful adjunct to the Resuscitation Council UK guidance and should be considered for incorporation into its next iteration
    corecore