
MASTER OF SCIENCE THESIS

by

Rebecca Walsh Dell

June 2010

Abyssal Mixing from Bottom Boundary Effects in
Mid-Atlantic Ridge Flank Canyons

Joint Program
in Oceanography/

Applied Ocean Science
and Engineering

MIT/WHOI

Massachusetts Institute of Technology

Woods Hole Oceanographic Institution



ABYSSAL MIXING FROM BOTTOM BOUNDARY EFFECTS IN
MID–ATLANTIC RIDGE FLANK CANYONS

by

Rebecca Walsh Dell

A. B., Harvard University, 2005

Submitted in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

June 2010

c© 2010 Rebecca Walsh Dell
All rights reserved.

The author hereby grants to MIT and WHOI permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole

or in part in any medium now known or hereafter created.

Signature of Author

Joint Program in Oceanography/Applied Ocean Science and Engineering
Massachusetts Institute of Technology

and Woods Hole Oceanographic Institution
30 January 2010

Certified By

Lawrence J. Pratt
Thesis Supervisor

Accepted By

Karl Helfrich
Chair, Joint Committee for Physical Oceanography

Massachusetts Institute of Technology
and Woods Hole Oceanographic Institution



2



Abstract

This paper begins to explore a previously neglected mechanism for
abyssal ocean mixing using bottom boundary layer dynamics. Abyssal
mixing and the associated upward buoyancy fluxes are necessary to
balance the sinking of dense waters at high latitudes and to close the
global overturning circulation. Previous studies have concentrated on
the hypothesis that the primary mechanism for this mixing is break-
ing internal waves generated by tidal flows over rough topography.
However, intriguing observations, particularly from the Brazil Basin
Tracer Release Experiment, suggest that mixing in the flank canyons
of the Mid–Atlantic Ridge generated when strong mean flows interact
with the many sills and constrictions within the canyons may repre-
sent a dynamically important amount of abyssal mixing. The energy
pathways and mechanisms of this mixing are much less clear than in
the case of breaking internal waves. This study attempts to clarify
this by suggesting an analogy with an idealized diffusive boundary
layer over a sloping bottom. This boundary layer is characterized by
up–slope flows powered by the buoyancy flux in the fluid far from
the boundary. Here we explore the energy budget of the boundary
layer, and find that the diffusive boundary layer provides flows that
are generally consistent with those observed in submarine canyons. In
addition, we derive the vertical velocity in the far–field fluid, analogous
to an Ekman pumping velocity, that these boundary layers can induce
when the bottom slope is not constant. Finally, we present both the-
oretical and numerical models of exchange flows between the bottom
boundary and the far–field flow when the bottom slope is not constant.
These exchange flows provide a mechanism by which boundary–driven
mixing can affect the overall stratification and buoyancy fluxes of the
basin interior.
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1 Introduction

The hundreds of canyons on the bottom of the Atlantic ocean have seldom

been carefully observed. However, what observations we do have show some

interesting features, features that suggest that physical processes in these

canyons may be rather more significant to the large–scale dynamics of the

ocean basin than previously considered. First, they appear to have significant

mean flows along the canyon axis, which contain more energy than the tidal

frequency bands and often exceed the peak tidal velocities. These along-

axis flows have been reported in both ridge–flank and ridge–crest canyons

(Thurnherr et al., 2005; St. Laurent and Thurnherr, 2007; Thurnherr and

Speer, 2003; Thurnherr et al., 2008). In the ridge–flank canyon at 22◦S stud-

ied as part of the Brazil Basin Tracer Release Experiment (BBTRE) and

shown in Figure 1, a current meter mooring deployed for two years found a

mean along–axis current of 1.7 cm s−1 going up the slope of the Mid–Atlantic

Ridge (Toole, 2007), notably fast for the bottom of the ocean. Typical peak

tidal velocities measured by the current meter mooring were on the order of

2 cm s−1. Furthermore, the current measured by the mooring was strongly

bottom–intensified and confined within the canyon, as shown by the red

arrows in Figure 1. The largest mean velocities were within 200 m of the

bottom, while above the canyon walls, which extend approximately 1000 m

up from the canyon floor, the measured velocities were not significantly dif-

ferent from zero. The current meter results are broadly corroborated by the

dispersion of an inert tracer released in the BBTRE, which migrated approx-

imately 2500 km along the canyon over the course of 14 months, suggesting

a mean velocity of a few centimeters per second (Ledwell et al., 2000).

The second interesting feature of the flow in ocean bottom canyons is that

they all seem to have highly enhanced levels of mixing, with reported levels of

dissipation as high as 10−6 W kg−1, and turbulent eddy diffusivities as high

as 3×10−2 m2 s−1 (Polzin et al., 1996; St. Laurent and Thurnherr, 2007). In

the canyon studied in the BBTRE, the mean dissipation level was estimated

to be 9.3 × 10−10 W kg−1 and the typical diffusivity was 4.3 × 10−3 m2 s−1

(Thurnherr et al., 2005), and the study participants believe that mixing in the

canyon may have been systematically undersampled (St. Laurent, personal

7



Figure 1: Hydrography section from the Brazil Basin Tracer Release Exper-
iment, with mean velocities measured by a current meter mooring. These
data were taken along the Mid–Atlantic Ridge flank canyon at 22◦S indi-
cated in Figure 2. Shaded contours show density, the thick black line gives
the high resolution multi–beam bathymetry along the canyon axis, and the
faint white lines are the tops of the canyon walls. The higher wall is on the
south side of the canyon. Notice how the lines of constant density curve down
and intersect the topography along the ridge slope, implying a west–to–east
pressure gradient. The red arrows show the mean velocity as measured by a
current meter mooring deployed for approximately two years (Toole, 2007).
Courtesy of Andreas Thurnherr.

communication). These values should be compared to the background levels

in the ocean at mid–depth of 10−10 W kg−1 of turbulent dissipation, and a

turbulent diffusivity of 10−5 m2 s−1. Both the diffusivity and the dissipation

rate are enhanced by an order of magnitude or more in the canyons.

A third notable feature of these canyon flows is the apparent coloca-

tion of the highest levels of mixing and topographic sills that obstruct the

along–canyon current. The often sparse data suggests that there may be

spilling flows over these sills, and possibly even instances of hydraulic control

(Thurnherr et al., 2005; St. Laurent and Thurnherr, 2007).

The most obvious explanation for the mean flows is that there exists an

exogenous pressure gradient driving them, for example a pressure gradient

between the denser water of the Brazil Basin and the lighter water of the Gulf

of Guinea in the case of the 22◦S canyon. However, most of the ridge flank

and ridge crest canyons terminate in dead ends, blocking such larger–scale

flows. Moreover, strong mean flows have been observed in canyons in many

8



Figure 2: Distribution of canyons in the South Atlantic. Each dot on the
above figure represents a local depth maximum. The Mid–Atlantic Ridge
flank canyons are clearly show as roughly horizontal stripes extending on
both sides of the ridge crest, indicated by a black line. These canyons are
on the order of 20 km wide and 1000 m deep. They are crosscut by sills
every 30–50 km. The canyon studied in the Brazil Basin Tracer Release
Experiment is indicated by a red arrow. It is not particularly noteworthy.
Courtesy of Andreas Thurnherr.
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different orientations and contexts. As a result, local processes within the

canyons are thought to be a more likely explanation of the flows observed.

Thurnherr and others who study these canyons have proposed that the

strong mean flows, the enhanced levels of mixing, and the strong topographic

interactions at the sills are not independent, but instead that the flow is in

some sense ‘mixing–driven’. The general picture of a mixing–driven flow is

described by Thurnherr, et al.: “A fraction of the kinetic energy of externally

imposed turbulence . . . acts to increase the potential energy of the water col-

umn, while the remainder is dissipated. In a sloping valley this potential

energy made available by mixing can drive a (restratifiying) up–valley flow”

(2005). In the same paper, they point out that in the observed canyons

“there is at least as much low–frequency [mean–flow] energy as tidal energy

available for mixing.” In Thurnherr’s picture, the greater intensity mixing

over the rough Mid–Atlantic Ridge relative to over the smooth–floored Brazil

Basin (Polzin et al., 1997) causes the water column over the ridge to become

more homogenized than the water column over the basin. This can be seen

in Figure 1, as the isopycnals curve downward to the east and eventually

intersect the bottom. This sets up a west–to–east pressure gradient, which

in turn drives an up–slope flow. The flow goes down the pressure gradi-

ent and not across it (as geostrophic balance would predict) because of the

topographic constriction of the canyon walls; the canyon is narrower than

the local Rossby radius of deformation. Then this up–slope, along–canyon

pressure–driven flow interacts with the rough topography of the ridge, pos-

sibly flowing over sills and obstructions in hydraulically interesting ways, to

further enhance the mixing, reinforcing the dynamics of the system. As the

mixing is enhanced, the up–slope flow accelerates, further enhancing mixing.

This is an intuitively very appealing picture, but it raises some important

questions, particularly: How can we describe the current as both the cause

and the effect of the mixing? Is it possible for a flow to accelerate itself, or

is this the fluid mechanical equivalent of perpetual motion?

This seeming paradox would be just a wet curiosity—albeit a rather in-

teresting one—were it not for the passionate interest of physical oceanog-

raphers in where and how mixing occurs in the deep ocean. The reason

physical oceanographers care so much about abyssal ocean mixing is that it
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is a crucial part of the overturning circulation of the ocean and of the ocean’s

energy budget. We know that dense water masses like the Antarctic Bottom

Water (AABW) and North Atlantic Deep Water (NADW) are formed near

the poles and sink to the ocean depths, where they spread throughout the

ocean basins of the world. However, many of these basins are closed—they

have an abyssal inlet but no outlet. For example, the Brazil Basin has an

abyssal inflow through the Vema Channel, but no abyssal outflow. Addition-

ally, these deep waters are isolated from fluxes of heat or freshwater. The

only way to export mass from the closed basins to balance the bottom water

flowing into them is a net vertical and diapycnal velocity. This upward trans-

port of mass occurs primarily by mixing heavier, deeper water with overlying

lighter water. Hogg, et al., used this principle to estimate the average mix-

ing rate in the Brazil Basin from hydrographic data (1982). In the Atlantic,

the heaviest water is AABW, and it must mix with the overlying NADW

to export mass from the closed abyssal basins. We have had a reasonable

estimate of the total rate of mixing upward, called the diapycnal diffusivity,

averaged over all of the world’s ocean basins and over all depths below about

1000 m, since the 1960s, when Munk estimated it to be 10−4 m2 s−1, based

on the mean density structure of the deep ocean (Munk, 1966). However,

we also know that there is a high degree of spatial inhomogeneity in mixing

rates, demonstrated most dramatically by the microstructure survey in the

BBTRE that showed mixing enhanced by more than two orders of magni-

tude over the rough–bottomed flank of the Mid–Atlantic Ridge compared to

the smooth–bottomed Brazil Basin interior (Polzin et al., 1997). Polzin and

his coauthors ascribe this mixing to the breaking of internal waves gener-

ated by tidal flow over the rough bottom. However, a homogeneous internal

wave field would not explain why the mixing inside the canyons is so much

stronger—five times stronger—than above the equally rough flanks of the

ridge. This is one reason why Thurnherr, et al., think the mixing is more

likely caused by interactions between mean flows and topography inside the

canyon.

Thurnherr, et al., suggest that if the data collected in the BBTRE are rep-

resentative of the mixing rates found in other Mid–Atlantic Ridge canyons,

the contribution of these canyon–related processes to the overall energy and
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Region Area Dissipation (W kg−1) Mixing
Abyssal Plain 40% 0.9× 10−10 14%
Above MAR flank 45% 1.9× 10−10 33%
Inside Canyons 15% 9.3× 10−10 53%

Table 1: Relative contributions to abyssal mixing by various types of topog-
raphy in the Brazil Basin. For each class of topography, the area covered
by that class is given, as is the mean diffusivity observed over that class of
topography, and the percent of the total diffusivity in the Brazil Basin that
represents. Data from Thurnherr, et al., (2005), Table 1, based on BBTRE
microstructure surveys. These data reflect only mixing below 2000 m depth.
Morris, et al. (2001) , divides the area into similar topographic classes to
estimate the total mixing in the Brazil Basin, and finds results consistent
with this and with heat budgets like those in Hogg, et al. (1982).

buoyancy budgets of the Atlantic ocean may be substantial. Table 1 gives es-

timates of the approximate contributions to abyssal mixing of three different

classes of area, separated by the topographic class each contains. Figure 2

shows the ridge–flank canyons throughout the tropical South Atlantic. Only

about 15% of the interface between the AABW and NADW occurs inside

these canyons, but the mixing rates inside the canyons are so enhanced

that as much as half of the mixing across this interface may take place in

these canyons. Extrapolating from sparse observations is dangerous, but the

BBTRE canyon is in many ways indistinguishable from nearly 1000 other

Mid–Atlantic Ridge flank canyons. Both its topographic and hydrographic

properties appear to be representative. All slow–spreading mid–ocean ridges

are characterized by flank canyons approximately 1000 m deep and approxi-

mately 20 km wide. The mean slope of the Mid–Atlantic Ridge flanks is on

the order of 10−3 − 10−2. The along–canyon pressure gradient observed in

the BBTRE canyon is similar to that in other canyons as indicated by two

meridional WOCE sections (A15 and A16) along the western flank of the

Mid–Atlantic Ridge. There is no obvious reason why this canyon should be

unlike the other canyons seen in Figure 2.

If the BBTRE canyon is typical of ridge flank canyons, and the rough

mixing estimates based on the BBTRE data shown in Table 1 are reason-

able, mixing in abyssal canyons could have potentially large implications for

the way we understand and model ocean dynamics. The topographic mech-
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anisms involved in canyon–mixing, like overflows, constrictions, and possibly

hydraulic control, are very different than the mechanisms we usually use

to explain abyssal mixing, like the breaking of internal waves. If our un-

derstanding of the mechanisms and location of deep ocean mixing changes,

our understanding of the ocean’s energy budget must change with it. Af-

ter all, mixing is nothing more than converting kinetic and internal energy

into potential energy. As a result, the real interest in these canyons is in

understanding how they fit into the ocean’s energy budget. What are the

sources of energy that drive the observed dynamics, and what mechanisms

convert that energy to new forms? Is it sensible to think about the mean

flow as ‘mixing driven,’ and is the mixing that is generated by the mean flow

significant? How much of the total abyssal upwelling can be accounted for

by up slope flow in the canyons? Most generally, how is abyssal stratification

maintained, and are canyon processes important to it? These are the central

questions that this study seeks to begin to answer.

Specifically, this study will try to gain insight into some simple mecha-

nisms that may be relevant to it by studying some highly idealized topogra-

phies. The main mechanism studied is diffusion–driven flow, first described

by Phillips (1970) and Wunsch (1970) in the early 1970s. This is the best–

established mechanism by which mixing can drive currents along sloping

bottoms, a key feature of the observed canyon flows. We will explore the en-

ergetics of these flows in section 2, followed by an extension of the boundary

layer theory to varying slopes in section 3, and finally present some numerical

experiments of idealized configurations performed using the Regional Ocean

Modeling System (ROMS) in section 4.

2 Theory: Energetics of Boundary Layer

The first goal in understanding the energetics of the Mid–Atlantic Ridge

canyon system described in the introduction is to understand the energetics

of our idealized model system. We begin with diffusion–driven flow over a

constant non–rotating slope, as described by Phillips (1970) and shown in

Figure 3. We assume that the solid bottom boundary is not a source of
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heat or salt for the fluid, that is that the bottom is insulating. Since heat

and salt diffuse down gradients, if there is no flux of heat or salt from the

boundary, the slope–normal gradient of their concentration must go to zero

at the boundary. This no–flux boundary condition at the sloping boundary

causes isopycnals to bend downward to intersect the slope at a right angle, as

shown in Figure 3. This in turn creates a left–to–right pressure force because

denser fluid is at the same depth as lighter, and this leads to an upslope flow.

This system is governed by incompressible Boussinesq dynamics, which

means that we assume the changes in density are much smaller than some

constant background density ρ0. We make the assumption ρ = ρ0 every-

where in our dynamical equations except in the density equation and the

gravitational terms of the momentum (Navier–Stokes) equations. This gives

the following momentum equation:

ρ0
∂u

∂t
+ ρ0u · ∇u = −∇p̃+ ρ̃∇φ+ ρ0∇ · (ν∇u) (1)

φ is the gravitational potential, where g = ∇φ is the acceleration due to

gravity. ρ̃ is the departure of the density ρ from a constant reference den-

sity ρ0, and p̃ is the departure from the background hydrostatic pressure

field p0 = psurface − ρ0gz. ρ̃ includes variations in density due to both the

background stratification and the boundary layer effects. This version of

the Navier–Stokes equations omits terms for rotation; this is applicable in

canyons like the one observed in the BBTRE because the canyons are nar-

rower than the local Rossby radius. The momentum equation (1) is coupled

to a density equation:

∂ρ̃

∂t
+ u · ∇ρ̃ = ∇ · (κ∇ρ̃) (2)

This equation comes from combining the heat equation, the salt equation,

and the conservation of mass under the Boussinesq approximation. We be-

gin with a model system that has a constant stratification, constant slope,

constant mixing coefficients κ and ν, and infinite extent in the along–slope

direction. When Phillips first derived the solution for this case, he was imag-

ining water flowing through fissures in rocks, where the relevant mixing co-
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Figure 3: Definition of variables for theory section of paper. Key variables
are α, the slope angle; δ = 1

γ
, the boundary layer thickness scale; (ξ, η) the

along–slope and slope–normal coordinates; and u, the along–slope velocity,
indicated by the red arrow. The thin black lines are surfaces of constant
density.

efficients would be the molecular viscosity νm and diffusivity κm. However,

in the ocean, the background level of turbulence caused by winds and tides

leads to a much higher rate of mixing. This enhanced mixing is customarily

described using eddy mixing coefficients, νeddy and κeddy. This simplification

discards any Stokes’ drift that the turbulence might cause, but otherwise is

thought to reasonably reflect the average influence of turbulence on scales

larger than the individual eddies (Vallis, 2006). The following derivation is

consistent either for molecular or for eddy mixing coefficients. When we com-

pare its results to oceanic observations, or perform numerical experiments,

we will use eddy mixing values for ν and κ. One of the most interesting

aspects of the dynamics posited by Thurnherr is that the mixing coefficients

ν and κ are themselves functions of the velocity field. However, the following

theory requires that ν and κ have values that are known a priori, regardless

of whether those are molecular or eddy values.

Under the simplifying assumptions of constant–slope, constant background

stratification, and infinite extent, the most natural coordinates to use are an

along–slope coordinate ξ and a slope–normal coordinate η, instead of hori-

zontal and vertical coordinates. We associate an along–slope velocity u and

a slope–normal velocity w to the coordinates (ξ, η). In this case, the problem
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reduces to a one–dimensional system that varies only in the slope–normal η

direction. ∂
∂ξ

= 0 for all the boundary layer variables. However, the den-

sity ρ̃ and pressure p̃ will still contain a term that varies with ξ because the

density and pressure vary with the background stratification. Since there

is no along–slope variation in the along–slope velocity, the no normal flow

boundary condition at the bottom boundary implies that the slope–normal

velocity w = 0 throughout the domain. Because of this, and because u is

independent of ξ, the nonlinear advection terms are precisely zero, so it is not

necessary to assume linearity in the constant–slope, constant–stratification

case. Finally, we seek a steady–state solution, where ∂
∂t

= 0, and we assume

the mixing coefficients κ and ν are constant. This reduces our governing

equations (1) to:

0 = −∂p̃
∂ξ
− ρ̃g sinα + ρ0ν

∂2u

∂η2
(3)

0 = −∂p̃
∂η
− ρ̃g cosα (4)

Similarly, the density equation (2) reduces to:

u
∂ρ̃

∂ξ
= κ

(
∂2ρ̃

∂ξ2
+
∂2ρ̃

∂η2

)
(5)

Our boundary conditions are that the velocity must go to zero at the bot-

tom (no–slip), the slope–normal density gradient must be zero at the bottom

boundary, and that the along–slope velocity and density perturbations in-

duced by the boundary must decay as you move far from the boundary:

u,
∂ρ̃

∂η
= 0 , at η = 0 (6)

u→ 0 , as η →∞ (7)

ρ̃→ −N
2ρ0z

g
, as η →∞ (8)

Phillips solves this system by combining equations (3), (4), and (5), and ob-

taining a single fourth–order, constant–coefficient ordinary differential equa-

tion equation for the density perturbation. This in turn implies an along–
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slope velocity, u:

u(η) = 2κγ cotαe−γη sin γη (9)

The along–slope velocity u depends on η, the slope–normal coordinate, and

α, the slope angle. It also depends on the thickness scale of the boundary

layer, given by:

δ =
1

γ
=

(
4νκ

N2 sin2 α

) 1
4

(10)

Higher rates of mixing ν and κ are associated with thicker boundary layers.

A typical theoretical velocity profile is shown by the dashed line in Figure 7.

It features a strong up–slope bottom current with a small down–slope flow

above it. The down–slope component has less than 5% the volume flux of

the primary up–slope current. The density field that supports the velocity

given in equation (9) is:

ρ = ρ0 − ρ0
N2

g
(ξ sinα + η cosα)− ρ0

N2 cosα

γg
e−γη cos γη (11)

This density field is split into an average density, ρ0, a background stratifi-

cation ρ̄ given in the second term and having buoyancy frequency N2, and

a perturbation from that background stratification ρ′ induced by the no flux

condition at the boundary, given in the last term. ρ̃ = ρ̄ + ρ′. Wunsch

simultaneously obtained essentially the same solution using boundary layer

approximations, but it turns out that his asymptotic approximations are un-

necessary in the case of the truly constant and infinite slope (1970). However,

as the slope angle α approaches zero, the time scale and length scale required

for the flow to adjust to a steady–state solution both go to infinity. The time

scale τ is given by the time required for diffusion to act across the thickness

of the boundary layer:

τ ∼ δ2

κ
∼
√

Pr

N sinα
(12)

Pr is the Prandtl number, ν
κ
. The adjustment length scale λ is given by the

boundary layer velocity scale and τ :

λ ∼ uτ ∼ δ cotα ∼ (κν)1/4

N1/2

cosα

sin3/2 α
(13)
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For small angles, τ ∼ α−1 and λ ∼ α−3/2. As the slope angle α decreases,

the boundary layer thickness δ increases. If α continues to decrease, it will

take longer and longer for diffusion to act across the increasing boundary

layer thickness, so the boundary layer approaches a steady state more slowly.

Though the solution presented in equations (9) and (11) is formally valid for

all slope angles α, the solution is not expected to ever be observed for very

small angles, because of the long space and time scales required to achieve

steady state.

To construct an energy budget for this system, it’s useful to begin with

the full momentum equations used to derive the solution, the Boussinesq

Navier–Stokes equations (1), and then apply our simplifying assumptions.

These equations are multiplied by u, the velocity to make a kinetic energy

budget:

u ·
(
ρ0
∂u

∂t
+ ρ0u · ∇u = −∇p̃+ ρ̃∇φ+ ρ0∇ · (ν∇u)

)
(14)

The kinetic energy is KE = 1
2
ρ0u · u. Some rearranging gives:

∂

∂t
(KE) + u · ∇(KE) = −∇ · (up̃)− ρ̃u · ∇φ+∇ · (ν∇(KE))− ε (15)

ε is the dissipation of kinetic energy, that is its transformation into heat:

ε = ρ0ν∇u : ∇u = ρ0ν

((
∂u

∂x

)2

+

(
∂u

∂y

)2

+ · · ·+
(
∂w

∂y

)2

+

(
∂w

∂z

)2
)
(16)

In words, the time rate of change of kinetic energy is given by the combination

of the kinetic energy advective flux divergence, the pressure work done by

the flow, the conversion of potential energy into kinetic energy, the diffusive

flux divergence of kinetic energy, and the dissipation of kinetic energy. We

can similarly use the density equation (2) to derive a potential energy budget

by taking φ·(2):

∂

∂t
(PE) + u · ∇(PE) = ρ̃u · ∇φ+∇ · (κφ∇ρ̃)− κ∇φ · ∇ρ̃ (17)

Potential energy is defined as PE = ρ̃φ. In words, the time rate of change of

18



KE1 ∂
∂t

(KE) Time Rate of Change of KE
KE2 u · ∇ (KE) Advective Flux of KE
KE3 −∇ · (p̃u) Divergence of Pressure Work
KE4 −ρ̃u · ∇φ Conversion of PE → KE
KE5 ∇ · (ν(∇(KE)) Diffusion of KE
KE6 −νρ0∇u : ∇u Viscous Dissipation (KE → IE)

PE1 φ∂ρ̃
∂t

Time Rate of Change of PE
PE2 −u · ∇(PE) Advective Flux of PE
PE3 ∇ · (κφ∇ρ̃) PE Diffusion
PE4 ρ̃u · ∇φ Conversion of KE → PE
PE5 −κ∇φ · ∇ρ̃ Conversion of IE to PE, or the Vertical Buoyancy Flux

Table 2: Terms in general Boussinesq Kinetic and Potential Energy budgets.
Not all of these terms are relevant in a diffusive boundary layer. IE is internal
energy, that is, heat.

potential energy is given by the combination of the potential energy advective

flux divergence, the conversion of potential energy to kinetic energy, the

diffusive flux divergence of potential energy, and the mixing–driven buoyancy

flux. All of the terms in both the KE and PE budgets are summarized in

Table 2.

So far, this describes a local energy balance. The way in which the energy

terms balance one another at different heights above the bottom is shown

in Figure 4. Close to the bottom, where the velocity shear is largest, the

primary balance is between viscous dissipation and the diffusion of kinetic

energy, while the mass fluxes in the potential energy budget must go to zero

at the bottom. Far from the boundary, those mass fluxes are the only non–

zero terms. The green lines, equal and opposite in the two subplots, show

the net conversion of potential energy to kinetic. To find the net effect of

the various terms, consider an integral budget over a fixed volume, taken

without loss of generality to be given by ξ ∈ (0, ξ1), and η ∈ (0, ηf ). We take

the limit as ηf → ∞ to ensure that all boundary layer effects are captured

by our budget. This volume is similar to the box shown as a dashed line

in Figure 6, but with a constant bottom slope. The results of the integral

budget are in Table 3.

What we can see is that the energy in the boundary layer is generated as

potential energy, then converted to kinetic energy, then dissipated. The only
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Figure 4: All terms contributing to the kinetic and potential energy budgets
of a diffusive boundary layer over a sloping bottom. The vertical coordinate
has units of the boundary layer thickness δ = 1

γ
defined in equation (10).

The top of the boundary layer is defined as the zero–crossing of the boundary
layer velocity, at γη = π. The terms and their physical interpretations are
given in in Table 2. Note that the source of energy that drives the boundary
layer is the buoyancy flux, which generates potential energy. This potential
energy is transformed into kinetic energy, and the conversion is shown as the
equal and opposite green lines in both plots. The parameter values used are
typical to the best of our knowledge of submarine canyons: ν, κ = 10−3 m2s−1;
N2 = 10−5 s−2; α = 0.02 rad. The integral contribution of each term to the
total energy budget is given in Table 3.
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KE1 = 0 = 0
KE2 = 0 = 0
KE3 = −A

2
cosα (2ξ1 cosα + γξ21 sinα) < 0

KE4 = A
4

cosα (5ξ1 cosα + 2γξ21 sinα) > 0
KE5 = 0 = 0
KE6 = −A

4
ξ1 cos2 α < 0

PE1 = 0 = 0
PE2 = A

4
ξ1 cosα (9 cosα + 4γξ1 sinα) > 0

PE3 = −A
4
ξ1 (4γηf + γξ1 sin(2α)) < 0

PE4 = −A
4
ξ1 cosα (5 cosα + 2γξ1 sinα) < 0

PE5 = −A
2
ξ1 (1− 2γηf + cos(2α)) > 0

Table 3: Total contribution of various terms in the Boussinesq energy bud-
get to the steady, constant slope diffusive boundary layer. Each term was
obtained by integrating the general Boussinesq energy budget from ξ = 0
to ξ1 and from η = 0 to ηf , then taking the limit as ηf → ∞. Note that
there is no loss of generality associated with these limits of integration; they
represent any section of the slope. The final column gives the sign of each
term, indicating whether the associated physical process is a source or a sink
of energy. The coefficient A = ρ0N

2κ/γ.

kinetic energy source term is KE4, the conversion term from potential energy.

Dissipation (term KE6) is a net energy sink, as is the pressure term (KE3).

Pressure work is constantly being done on the flow as it moves through the

stratified ambient.

The source of the potential energy is the mixing of density upward (or

buoyancy downward, if you prefer), which happens throughout the fluid

through the diffusivity κ. However, this generation of potential energy from

the mixing up of dense fluid manifests itself in two ways: directly through the

buoyancy flux term (PE5) and indirectly as an advective flux of PE (PE2).

This advective flux term (PE2) expresses the tendency of the boundary layer

flow to restratify the boundary region. In a closed system, an advective term

could not be considered a source term; advection just moves energy around,

but does not add to it or remove it from the system. However, this is an

open system, which posits the existence of an infinite reservoir of stratified

fluid, maintaining a fixed N2 everywhere in the domain outside the boundary

layer. In order to maintain this stratification, mass, and so potential energy,

is constantly being fluxed from the infinite reservoir into the boundary layer
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region. In steady state, this PE flux is exactly balanced by the diffusion of

density, and the isopycnals remain stationary.

It is possible to calculate the efficiency Γ of the conversion between po-

tential and kinetic energy directly using the integral forms of the terms in

the energy equations, given in Table 3:

Γ =
PE → KE

Total PE Sources
=

PE4

PE2 + PE5
=

5 cos2 α + 2ξ1γ sinα cosα

4π − 5 cos2 α + 4ξ1γ sinα cosα
(18)

For the parameter values shown in Figure 4, which are within oceanographic

range, Γ ≈ 0.5. Γ approaches a maximum value of 0.66 as α → 0. This

conversion efficiency only concerns the volume within the boundary layer,

that is within a distance of πδ of the boundary. It is necessary to restrict

the volume considered, because an infinite domain will generate an infinite

amount of potential energy through the buoyancy flux in term PE5.

It is here that the utility of the diffusion–driven flow model for under-

standing canyon flows starts to become clear. When speculating about the

upslope flows observed in the BBTRE, Thurnherr, et al. (2005), posit that

mixing both drives and results from the flow, making it difficult to understand

the energy source of the system. Using the energy budget just constructed,

however, we can specify precisely what the energy flux into the system is,

and where it comes from: buoyancy flux from diffusion of mass generates

potential energy (term PE5); some of this potential energy is converted into

kinetic energy (terms PE4 and KE4) and some of it diffuses away (term

PE3). The velocity resulting from the pressure gradient tends to restratify

the boundary layer, introducing an advective flux of potential energy (term

PE2), while some of the kinetic energy is dissipated as heat or internal en-

ergy (term KE6). The subsequent dynamics of the system now have a clear

energy source: the buoyancy flux in term PE5.

Let’s consider what is actually happening when we say that the buoyancy

flux in term PE5 is driving the flow in the boundary layer. Outside of the

boundary layer, where the velocities in our idealized system to go zero, the

only non–zero terms in the momentum or energy equations come from the

constant diffusion of density in the stratified far field. There is a continuous

flux of density up (or of buoyancy down, if you prefer) in the far field, given

22



by κN2ρ0. If N2 and κ are constant, this flux is also constant, and it does not

affect the stratification. However, approaching the bottom boundary, there

will inevitably be a flux–divergence. Density will continue to mix upward,

but at the boundary there is no mass coming from below to replace it. The

upslope, and so upward, advective mass flux in the boundary layer replaces

the mass being mixed up by diffusion in the interior. The way that the

buoyancy flux in the interior controls the flow in the boundary layer can be

seen very clearly if you integrate the density equation (2) from the boundary:∫ ∞
0

(
u
∂ρ

∂ξ
+��w

∂ρ

∂η
= ∇ · (κ∇ρ)

)
dη (19)

Unlike in the derivation leading to the velocity field in equation (9), here it is

not necessary to assume that the diffusivity κ is constant. Divide through by
∂ρ
∂ξ

, a constant depending on N2, to find total volume flux in the boundary

layer is given by:

Q =

∫ ∞
0

udη = − g

ρ0N2 sinα
(κ∇ρ)

∣∣∣∣∣
∞

0

= κ∞ cotα (20)

The total volume flux Q in the boundary layer is determined by the diffusivity

far from the boundary κ∞. This is a general statement of the boundary

layer flux, and it is independent of the structure of the diffusivity κ. If

we introduce a bottom–intensified mixing κ(η), it might change the velocity

structure of the boundary layer flow, it cannot change the total volume flux in

it. However, it should be noted that for this argument to be truly satisfying, it

should be the mass flux and not the volume flux that is exclusively determined

by κ∞. The mass flux, which is derived in the next section, depends on Q and

γ, the boundary layer thickness scale. γ is expected to vary depending on

the structure of κ(η), for example if κ is intensified close to the boundary. It

is not solely determined by the topography and κ∞, as Q is. This may be an

artifact of the Boussinesq approximation, under which we only consider some

variations in density, but it does not appear to be possible to derive a closed–

form solution for the velocity field without making this approximation. It

would be possible to test numerically if the mass flux M varies when slope–

normal variations in diffusivity are introduced, but that is beyond the scope
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of the current study.

Phillips, et al., attempted to model bottom–intensified mixing κ(η) in the

laboratory by oscillating a rough mat over a sloping bottom (1986). They

found that bottom intensified mixing led to a recirculation, with a down–

slope flow immediately overlying the up–slope boundary layer flow seen in

the laminar case. Since the net boundary layer flux is constrained by the far–

field buoyancy flux, this picture of a strong up–slope flow with its transport

mostly cancelled by a somewhat weaker down–slope flow makes a great deal

of intuitive sense.

It is difficult to compare the predicted flux to that observed in the 22◦S canyon

because almost nothing is known about the cross–canyon structure of the

flow, and the current meter mooring had instruments deployed at only three

depths in the bottom 1000 m of the water column. However, we can make a

rough comparison of theory and observations, choosing a value of the diffu-

sivity representative of either measurements in the interior of the canyon or

the background level of mixing observed in the ocean thermocline:

κcanyon = 5× 10−3 m s−2

κthermocline = 5× 10−5 m s−2

For a single typical ridge–flank canyon that is 30 km across, these yield

along–slope fluxes:

Qcanyon = 1.5× 105 m3 s−1 = .15 Sv

Qthermocline = 1.5× 103 m3 s−1

A relevant comparison for these numbers is the total amount of upwelling

required to close the global overturning circulation, estimated to be 25–30

Sverdrups (Wunsch and Ferrari, 2004), which matches the rate of deep wa-

ter formation. There are on the order of 1000 canyons like this one in the

global ocean, with bottom slopes in the range of 10−2 − 10−3, giving a total

upwelling from κcanyon of 1 Sv, and one hundredth of that for κthermocline.

This suggests that the advective upwelling flux from diffusion–driven flow in

Mid–Atlantic Ridge canyons is not sufficient to close the overturning circula-
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tion. However, the strong currents close to the bottom boundary may cause

additional upwelling of mass through diapycnal mixing.

Qcanyon is consistent with a flow of order 1 cm s−1 over a depth of 500 m,

which is roughly what the current meter observed, while Qthermocline suggests

a velocity much smaller than what was measured. One possible explanation

for why the near–field diffusivity better matches the observations than κ∞

is that there may be a return flow down the canyon almost as large as the

up–slope flow measured by the current meter, analogous to the down–slope

recirculation of the type Phillips, et al., described in the laboratory. Such

a flow could be passing unobserved in the gap of over 500 m between the

two deepest sets of current meters (at about 4900m and 4650m depth) and

the third current meter depth above the bottom (at about 4000m depth)

on the BBTRE mooring. St. Laurent, et al. (2001), predicted just such a

recirculation used the BBTRE hydrography and microstructure data, prior

to the recovery of the current meter data. Unfortunately, it is unclear how

reliable their estimate of the mean flow field is, as they predicted peak ve-

locities an order of magnitude slower than those seen by the current meter.

The diffusive boundary layer can also be compared to the observations in

terms of the boundary layer thickness. Using the ranges of parameter values

measured in the BBTRE, including κcanyon, the theory suggest a scale thick-

ness of δ ∼ 90–250 m, giving a boundary layer thickness of δπ ∼ 300–800 m,

consistent with what is observed in the slope of the isopycnals (Ledwell et al.,

2000). κcanyon provides a closer match between theory and observations, both

in terms of boundary layer flux and boundary layer thickness.

The far–field constraint on the boundary layer given in equation (20)

presents some problems when we shift our gaze from a laminar flow on a

laboratory scale to turbulent, high Reynolds number flows like those in the

ocean. We know that the mixing in the ocean is strongly bottom–intensified;

we have direct observations of this, and the boundary–driven and topographic

mixing mechanisms we’re discussing are by their nature strongest near the

boundary. Therefore, if we make a direct analogy between the two contexts,

using the diffusivity measured in the canyons as a constant κeddy substituted

in for the molecular κ in our boundary layer solution in equation (9), we

will substantially over–estimate the boundary layer flux. The lower mixing
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rates in the oceanographic far field mean less vertical density flux far from

the boundary and therefore less density flux divergence near the boundary

that the boundary layer mass flux must compensate for. It is important to

recognize this shortcoming of the analogy between laminar and turbulent

diffusive boundary layers. However, in the interests of simplifying the mech-

anism, we do not deal with this shortcoming in the current study. Instead,

both the theory and numerics use an enhanced but constant κ to describe

mixing processes, and the value of κeddy is chosen to best match our limited

observations.

We have spent some time discussing the energetics of a diffusion–driven

flow. However, this boundary layer still lacks some key oceanographically

relevant features. The slope–normal velocity is zero, so the boundary flow

does not interact with the fluid in the far–field, and any enhanced mixing

in the boundary layer cannot affect the stratification of the far field in an

open domain. As a result, this boundary layer cannot be expected to play an

important dynamical role in the larger circulation. To provide a mechanism

for the coupling of the boundary layer to the bulk of the fluid, in the next

section we will discuss the behavior of diffusive boundary layers over varying

slopes.

3 Theory: Behavior of Boundary Layer over

Varying Topography

Previous studies of diffusion–driven flow (Phillips, 1970; Garrett et al., 1993;

Peacock et al., 2004; Thorpe, 1987) have restricted their attention to bound-

ary layers over constant slopes, and usually constant mixing coefficients κ, ν.

However, the slope of the ocean bottom varies at all scales, with potentially

interesting consequences. The foremost among these consequences arises

from the slope dependence of the flux in the boundary layer. As shown in

equation (20), the volume flux is proportional to cotα. Varying topography

means that the flux in the boundary layer also varies along–slope, which

means that fluid must be exiting or entering the boundary layer at changes

in slope. Like an Ekman layer, where variations in stress force a vertical
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velocity, here variations in slope force a vertical velocity.

The first step in relaxing the restriction to constant slopes is to think

about boundary layers over ‘slowly varying’ slopes. A slope can be thought to

vary slowly if the slope is locally constant, that is if slope varies so slowly that

the constant slope boundary layer solution can be used at each point along it.

The criterion for slow variations is traditionally taken to be δ << R, where

R is the radius of curvature of the slope. The bottom boundary of the Mid–

Atlantic Ridge does not vary slowly with respect to the turbulent boundary

layer, as the high–resolution topographic measurements of the canyon depth

shown in Figure 1; the bottom slope may be slowly varying with respect

to the laminar boundary layer. In the slowly varying case, we can use the

continuity equation to solve for the vertical velocity:

∂u

∂ξ
+
∂w

∂η
= 0 (21)

Taking the solution for a constant slope given in equation (9), and allowing

the slope angle to vary as α(ξ), we find:

w(ξ, η) =

∫ ∞
0

∂

∂ξ

(
2κγ cotαe−γη sin γη

)
dη (22)

We can find the constant of integration by applying a no normal flow bound-

ary condition: w = 0 at η = 0. All of the terms in w(ξ, η) are proportional

to e−γη except that constant of integration, so outside the boundary layer, it

is the only part of the slope–normal velocity that remains. It is given by:

W∞(ξ) = −κ∂α
∂ξ

1

sin2 α
(23)

The slope–normal velocity is proportional to the rate of change of the slope

angle, so it is proportional to the second derivative or curvature of the topog-

raphy. In the small–angle limit relevant to the ocean, we can convert W∞

into a vertical velocity:

W∞(x) = −κ h
′′

h′2
(24)

W∞ is expressed in terms of a topographic height h(x), where α = h′(x). The

velocity induced by a simple exponential topography is shown in Figure 5. In
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Figure 5: Vertical velocity induced over slowly varying topography. The
model topography is shown in the lower panel, and the induced vertical
velocity in the upper panel. Note the relationship of the induced vertical
velocity to the curvature of the topography, as shown in equation (24).

this model, as you move toward the origin, the curvature of the topography

increases, and so the velocity induced by the boundary layer increases. This

vertical velocity, which exchanges fluid between the boundary layer and the

far field has the potential to affect both the stratification and the circulation

of the far field fluid. The effect on stratification is separate from the mod-

ification of stratification by the broadly distributed downwelling needed to

balance the up–slope volume transport in the boundary layer (Woods, 1991).

Consider a topography consisting of two regions of constant slope with

slope angles α1 and α2, as illustrated in Figure 6. Define ξ = 0 as the location

of the change in slope. If α1 < α2, the volume flux in slope Region 1 will be

larger than that in slope Region 2. Near the intersection of the two regions,

we expect some of the boundary layer flux in Region 1 to be forced out of

the boundary layer. This fluid will form an intrusion at its depth of neutral

buoyancy. The mass flux in the intrusion will depend on the mass flux in the
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Figure 6: Schematic of dynamics of a diffusion–driven boundary layer over
topography with two slopes. In Region 1, the slope has angle α1, forcing a
velocity u1. Similarly, in Region 2, the slope has angle α2, forcing a velocity
u2. Since the total flux in Region 1 is larger than in Region 2, an intrusion
is formed as fluid is forced out of the boundary layer, shown by uint. The
dashed line shows a hypothetical box that we can use to make mass, volume,
and energy budgets.
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boundary layers. The mass flux in a constant slope boundary layer is:

M =

∫ ∞
0

ρu dη (25)

Assuming a constant stratification, N , and using the density field given in

equation (11), and velocity field given in equation (9), this gives a mass flux:

M = ρ0Q

(
1− 5

4

N2

gγ
cosα− N2

g
ξ sinα

)
(26)

Let’s consider a mass budget for an imaginary box containing the break in

the slope. The box is bounded by the bottom boundary, slope–normal lines

at −L1 and L2, and a horizontal line far enough away from the boundary to

be unaffected by boundary layer processes. A box of this type is shown in

Figure 6. The total mass balance is now given by:

M1 +M2 +MT +Mint = 0 (27)

M1 and M2 are the advective fluxes in the boundary layer on the left and

right edges of the box from the bottom boundary layers in Regions 1 and 2.

MT is the diffusive flux across the upper boundary and Mint is mass flux in

the intrusion. We know what the first three terms are:

M1 = ρ0Q1

(
1− 5

4

N2

gγ1
cosα1 +

N2

g
L1 sinα1

)
M2 = −ρ0Q2

(
1− 5

4

N2

gγ2
cosα2 −

N2

g
L2 sinα2

)
MT = −κ∂ρ

∂z
(L1 + L2) = ρ0

N2κ

g
(L1 + L2)

The mass flux in the intrusion can be inferred as the residual of the above

three mass fluxes:

Mint = ρ0Q2

(
1− 5

4

N2

gγ2
cosα2

)
− ρ0Q1

(
1− 5

4

N2

gγ1
cosα1

)
(28)

Note that Mint is independent of the size of the box, given by L1 and L2.
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The mass that is diffused through the top of the box is balanced by the

stratification dependence of the boundary layer fluxes. The mass flux can be

nondimensionalized as M/ρ0κ, leaving N2/gγ as the only other nondimen-

sional parameter in the budget.

It is also possible to predict the average density of the fluid in the intru-

sion, ρint. It is given by:

ρint =
Mint

Qint

= −M1 +M2 +MT

Q1 +Q2

= ρ0

1− 5

4

N2

g

Q1δ1 cosα1 +Q2δ2 cosα2

Q1 +Q2︸ ︷︷ ︸


(29)

Without loss of generality, we choose ρ0 to be the bottom density at the

location of the change in slope. We can see immediately that ρint < ρ0,

because the term indicated with an underbrace is always greater than zero if

α1 < α2. We can similarly bound ρint as always greater than the density at

the top of the boundary layer, where the top is taken to be ηγ = π, the zero–

crossing of the along–slope velocity. The density at the top of the boundary

layer is ρ0(1 − N2πδ
g cosα

), and if one compares this to the size of ρint given in

equation (29), one finds after some rearranging that:

Q1

(
πδ

cosα
− 5

4
δ1 cosα1

)
> Q2

(
πδ

cosα
− 5

4
δ2 cosα2

)
(30)

Because the term in the parentheses is always positive, this inequality is

always true for α1 < α2, and ρint is bound by the densities spanned by the

thickness of the boundary layer.

Now that we have developed some expectations about the behavior of the

bottom boundary layers in this geometry, we can test them numerically, as

described in the next section.

4 Numerical Experiments

To test the ideas proposed in the previous section, we performed a series of

numerical experiments using the Regional Ocean Modeling System (ROMS),

developed by Shchepetkin and McWilliams (Shchepetkin and McWilliams,
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2005). ROMS is a fully non–linear hydrostatic primitive equation model.

It has a free surface, and so calculates the barotropic and baroclinic modes

separately. ROMS uses topography–following coordinates, also known as

σ–coordinates. It was primarily for this reason that ROMS was selected, as

σ–coordinates can represent smooth, instead of step–like, topography and so

more effectively represent bottom boundary layers. Additionally, ROMS is

designed for realistic ocean modeling, so it will be easier to move to more

oceanographically relevant configuratons as the research progresses. This

includes the capability to run eddy–resolving models.

The numerical experiments presented here use a topography similar to

that shown in Figure 6, consisting of two constant slope sections with slopes

α1 and α2 with a smooth variation between them. In total, there were

60–100 vertical levels, depending on the slope angle and overall water depth

in each model run. The vertical resolution increased monotonically as one

approached the bottom boundary, with vertical grid spacing varying from

about 0.5 m at the bottom to about 15 m at the top. For comparison, the

boundary layer scale height δ ranged from 6–40 m. We found that the free

surface had a substantial effect even when the water depth was 10× δ, so all

the computations took 35× δ as their minimum depth.

Mixing in the model was represented as an explicitly specified eddy dif-

fusivity κ and eddy viscosity ν. The eddy Prandtl number Pr = ν
κ

was as-

sumed to be one. Using eddy mixing coefficients in this simple–minded way

is physically problematic because it presupposes a source of energy to stir up

turbulent eddies. It is also concerning because, as mentioned in Section 2,

the eddy mixing coefficients in the ocean decline as one moves away from the

boundary, and this is expected to have an effect on boundary layer dynam-

ics. In spite of these concerns, however, using eddy mixing coefficients based

on κcanyon provides a good starting point—numerically straight–forward and

physically and observationally plausible. Unfortunately, ROMS does not per-

mit the user to precisely impose a no–slip bottom boundary condition, so the

no–slip boundary condition was approximated using a strongly enhanced lin-

ear bottom drag. The results were insensitive to the specific value of the

coefficient of drag. No surface stress was applied.

The lateral boundaries posed the largest computational problem. To
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model a boundary layer with no along–slope variation, we would like to have

a domain that is infinitely large in the along–slope direction. However, be-

cause the bottom boundary has a slope and there is an overall stratification, it

was not possible to use periodic boundary conditions. Ultimately, the lateral

boundary conditions that were most successful at reproducing the theoretical

solution for a constant slope involved specifying the barotropic momentum

at the inflowing boundary and specifying the full, depth–dependent, baro-

clinic momentum at the outflowing boundary. In order to match the flow to

this outgoing boundary condition, a long uninterrupted section of constant

slope topography was inserted between the study region and the outflowing

boundary. This section was typically 5000 m or longer, 2–10 times the length

scale λ for boundary layer development given in equation (13). In an effort

to further reduce the effects of the lateral boundaries, the lateral grid spacing

was ‘telescoped,’ increasing exponentially away from the test section. The

lateral grid spacing varied from about 65 m to over 900 m.

Radiation conditions were used for the free surface and for the active trac-

ers, namely heat and salt. Though the model included both active tracers,

only temperature was used for stratification, and salinity was taken as con-

stant throughout the domain. The stratification was not enforced at either

boundary, but rather specified as an initial condition. For the parameter

regions explored, the boundary layer was able to reach a steady state be-

fore any significant changes had occurred in the stratification. There was no

variation in the across–slope direction.

The velocity and density fields produced by the model over a constant

slope are shown in Figures 7, 8 and 9. Both the boundary layer velocity and

density fields agree with their predicted values to within 2% in the bound-

ary layer. The theory–model mismatch is somewhat larger in the far field,

but that is expected because the theory predicts zero anomalies outside the

boundary layer. The boundary layer develops over the timescale τ preditcted

in equation (12), and maintains a robust steady state.

Once the efficacy of the model was established for a constant slope, a series

of fifteen runs were performed in the two–slope configuration, spanning a

range of slope angles from α = 0.001 to α = 0.1. These runs are summarized

in the table in Appendix 1. Angles steeper than this range were thought to
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Figure 7: Diffusion Driven Flow over a Constant Slope. The dashed black line
indicates the predicted theoretical solution for along–slope velocity, while the
colored lines show profiles taken from the numerical solution over the course
of several hours. These profiles were taken after more than ten times the
adjustment timescale of the boundary layer had elapsed, when the model
was at a steady state. The dots on the left side of the plot indicate height
of the vertical levels of the grid. The bottom slopes up to the right of the
figure.
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Figure 8: Hovmuller diagram, showing the development of the boundary
layer as a function of time. The horizontal axis is time, while the colors show
the along–slope velocity. The heavy black line shows the expected growth of
the boundary layer thickness, using the time scale derived in equation (12).

35



Distance (m)

D
ep

th
 (m

)

Denisty Field,  = 0.026, t = 3.0e+05

 

 

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

1300

1250

1200

1150

1100

1050

28.05

28.1

28.15

28.2

28.25

28.3

28.35

28.4
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isopycnals are deflected downward to intersect the slope at a right angle.
The density field matches theoretical predictions to within 2%.
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Figure 10: Broken Slope, horizontal velocity section. In addition to the
arrows, the background color indicates the horizontal velocity. Note the
larger velocities to the left of the change in slope angle, and the counterflowing
intrusion flowing left from the change in slope angle.

be not oceanographically relevant. All of the numerical experiments had the

basic dynamics described in the previous section, with an inflowing boundary

layer of greater mass and volume flux than the outflowing boundary layer,

leading to an intrusion of fluid into the far–field. The velocity field of a

typical run showing all these features is shown in Figure 10.

The velocity–weighted average densities of the inflowing and outflowing

boundary layers are compared to theory in Figure 11. These were calculated

by dividing the mass flux by the volume flux in each boundary layer. All the

densities are shown relative to ρ0, which is defined as the bottom density at

the change in topographic slope. Again, the agreement is generally satisfac-

tory, though the inflowing boundary layer has a systematically higher density

in the numerics than the theory would predict, with a discrepancy of approx-

imately 10−2 kg m−3. This may be a result of the low density anomaly from

the intrusion that overlies the boundary layer in Region 1, seen in Figure 12.

This anomaly reduces the vertical density gradient, so decreases density dif-
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the same comparison for the boundary layer in region 2. The inflowing (left)
boundary layer density is systematically higher than predicted, possibly as a
result of the low density anomaly of the fluid intrusion that overlies it.
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fusion in the boundary layer, leading to a slightly higher density. However,

the diffusive effects of this anomaly should be on the order of 10−3 kg m−3,

an order of magnitude smaller than the theory–model mismatch that is ob-

served. The low density anomaly over the boundary layer comes from the

fluid intrusion forced out of the boundary and into the far field, which can

be seen clearly in Figure 12. The intrusion acts to spread the isopycnals, and

so will change the interior stratification of a closed basin. It is a mechanism

through which boundary mixing can affect the stratification in the far–field.

Quantitative comparisons of the mass budget calculated in the previous

section and the numerical results are provided in Figure 13 and Figure 14.

The total mass flux in the intrusion calculated numerically agrees with the

theoretical prediction to within 5% for all but the smallest slope angles. By

normalizing the mass flux it is possible to display this comparison for all

numerical experiments on a single figure, Figure 13. In the smallest slope–

angle cases, the computational challenges faced in this study were exacer-

bated. Slower and thicker boundary layers require much larger domains and

longer integrations, during which time the stratification erodes. These runs

suffer from eroded stratification and much stronger inadvertent boundary

impact on the flow from the lateral and surface boundaries. It is worth not-

ing that in all cases, the mass flux out of the boundary layer was of the same

order as the total flux in either of the bottom boundary layers. Figure 14

compares ρint to the prediction and to the range of densities found in the

boundary layers, given in equation (29). The numerical mass estimates are

frequently lower than the predicted density because the volume flux in the

intrusion has been over–estimated. The numerics often feature some small

horizontal movement of fluid above the boundary layer and intrusion, up to

20 boundary layer thicknesses δ above the bottom. These are the result of

imperfect open lateral boundary conditions. Because the density anomaly ρ′

is essentially zero in this area, these horizontal flows carry no net mass flux,

but they do carry a little net volume into the control volume. Since there

is a small additional Q into the control volume, Qint is a little larger than

theory predicts, making the numerical estimate of ρint lower. Curiously, the

numerical experiments showing the best agreement with predictions of he

intrusion mass flux Mint seem to have the worst agreement with predictions
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Figure 12: Broken Slope, density anomaly ρ′ field. The background strati-
fication has been removed. One can see clearly how the intrusion from the
boundary layer has introduced a wedge of heavier fluid (blue in color) into
the far field in Region 1, on the left side of the domain. The boundary
layer in this simulation is only 20m thick. The contours showing the density
anomalies within the boundary layer are tightly clustered near the slope, and
difficult to distinguish from one another at this scale. The larger features in
this plot are entirely due to the fluid exchange between the boundary layer
and the far–field. In the constant slope case, ρ′ is zero everywhere outside
the boundary layer, so this plot would show no anomaly except inside the
boundary layer, the cluster of contours immediately above the bottom.
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of the intrusion density.

With the very simple model presented here, we were able to confirm some

of our predictions about the behavior of diffusion–driven boundary layers over

idealized varying slopes. With the methods established, it will be possible

to expand the analysis to more complicated and oceanographically relevant

cases.

5 Discussion and Conclusions

The goal of this study was to begin to unpack the physical mechanisms that

may underly a fascinating set of observations of deep ocean mixing and flow.

The observations of a Mid–Atlantic Ridge flank canyon from the BBTRE

centered around both an unexpectedly strong bottom–intensified mean flow

and high levels of diapycnal mixing in the canyon. These two features both

require a source of energy to drive them, and even the authors who published

the data acknowledged that one was unclear. So where did the flow come

from, and how does it contribute to the deep ocean mixing budget?

We explored diffusion–driven flow as a possible mechanism to power the

along–slope flow on the ocean bottom, using a combination of theory and

numerics. This approach is probably most illuminating at either end of the

process. By this I mean that it provides a mechanism to drive the along–slope

flow with a clearly articulated energy source: potential energy generation

through mixing–driven buoyancy flux. This energy source has the poten-

tial to break the Chicken–or–Egg cycle of mixing–driven currents coupled to

current–driven mixing. At the same time, diffusion–driven flow provides a

mechanism for exchange of mixed fluid between the boundary layer and the

far–field fluid through the intrusions formed by changes in the slope of the

basin bottom. As we showed in our numerical experiments, these intrusions

can have as much mass flux as the boundary layer flows themselves. This ex-

change method is key, as numerous authors have pointed out that boundary

mixing can only be a source of buoyancy flux if the boundary layer remains

stratified; mixing in an already homogeneous boundary layer will not change

its stratification, after all (see, for example, Garrett et al., 1993). So the
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Figure 13: Normalized Mass Fluxes in Intrusions. The contours show the
value predicted by the mass budget in equation (28), while the color of the
dots show the mass fluxes calculated numerically. The interior of the dot and
the rim show two different methods for defining the top and bottom of the in-
trusion, which yield very similar results. The theory–model mismatch in the
smallest slope–angle runs may be a result of computational limitations due to
the comparatively long time–scales and large domains needed to reach steady
state. Enhanced mixing and vertical shear between the Region 1 boundary
layer and the overlying intrusion might further inhibit the full development of
the steady–state boundary layer. The remaining nondimensional parameter
from equation (28), is N2

gγ
∝
√

κ
N
N2

g
= 2.3× 10−5.
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diffusion–driven flow model discussed in this study provides a mechanism

for up–slope flow, and for exchange of mixed fluid between the boundary

layer and the far field. However, the crucial intermediate processes through

which the fluid mixing actually occurs are not detailed, but simply posited

by assuming a value of the eddy mixing coefficient, κeddy. Eddy diffusivities

require mechanical stirring, so while we were able to detail the source of en-

ergy for the up–slope flow, the energy source for the kinetic energy of stirring

remains mysterious. Answering this question is central to understanding if

these canyon flows play a dynamically important role in abyssal mixing. As

discussed by Wunsch and Ferrari (2004), the deep ocean is a mechanically–

driven system, and the most important energy inputs are the stirring of

winds and tides. The observations of elevated mixing are impressive, but

it is difficult to escape the question of mixing efficiency. The background

κeddy observed in the ocean thermocline is thought to be set by stirring of

winds and tides. This input of mechanical energy is converted into avail-

able potential energy in the form of the along–canyon slope of isopycnals,

creating a pressure gradient. This conversion has some efficiency Γ, which

is usually taken to be approximately 0.2 based on laboratory experiments

(Turner, 1980; Peltier and Caulfield, 2003). This means that 80% of the

kinetic energy is converted to internal heat energy, and 20% to potential en-

ergy. In the process described in this study, the available potential energy is

then converted back into the kinetic energy of the mean flow, with efficiency

Γ ≈ 0.5 in the laminar case from equation (18). Finally, the energy in the

mean flow is available to be converted back into potential energy—that is,

diapycnal upwelling— through instabilities in the mean flow or topographic

interactions. The following table summarizes the energy pathway and the

amount of the initial energy input available after each conversion:

KE → PE → KE → PE

Wind/Tides → Isopycnal Slope → Mean Flow → Abyssal Mixing∏
Γ = 1 → 0.2 → 0.1 → 0.02

Since every stage in this chain has an efficiency materially less than one, and

the total efficiency is the product of the efficiency of each stage, it is diffi-

cult to see how the final stage in the chain, when no more than 2% of the

energy initially input as winds and tides is still available, could be a sig-
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nificant component of the total ocean abyssal energy budget. However, the

observational evidence is compelling. In addition to the greatly enhanced

mixing observed in the BBTRE, Bryden and Nurser estimate that the 0.1%

of the abyssal ocean that is occupied by constrictions and overflows may be

sufficient to provide enough mixing to maintain the observed stratification

in the ocean because the mixing is so enhanced at these locations (2003). In

the history of physical oceanography, most often observations have lead and

theory has followed. The phenomenon of greatly enhanced canyon mixing

seems sufficiently widespread to merit significant further study.

Looking forward to the future of this work, the first question I would

like to answer is whether it is possible for the mechanical energy of stirring

to come from the boundary layer flow itself, as Thurnherr’s ‘mixing–driven’

hypothesis might suggest. One simple way to get at this question would be

to estimate the potential energy and buoyancy fluxes implied by the hydro-

graphic data collected. As discussed in Section 2, these sources of PE should

balance the KE lost to dissipation. If the energy measured in the microstruc-

ture dissipation was much larger than the potential energy flux, that would

imply that the primary source of mixing in these deep ocean canyons is not

driven by the boundary processes discussed in this study. The tracer data

from the BBTRE also might provide a better estimate of Q, the volume flux,

to compare with the theory.

Another way to approach the question of whether the source of mechanical

stirring comes from the canyon flows or is externally imposed is found in

additional theoretical work. A stability analysis of the boundary layer flow

would show if it were possible for diffusion–driven boundary layers to become

unstable and generate turbulence. The Richardson number, Ri does fall

below the instability threshold of 1
4

in the classical constant–slope solution

of Phillips (1970), though this is a necessary and not sufficient condition for

instability. The presence of viscosity and a nearby boundary both could act as

stabilizing forces. The ROMS simulations performed to date remain stable,

however they have Reynolds numbers frequently less than Re ∼ 100 because

of the high eddy viscosity. Even if the the boundary layer over a smooth

bottom proves to be completely stable, it might be possible for enhanced

turbulent diffusivity to be generated by flow over a rough boundary. There
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are well–established empirical parametrizations of diffusivity as a function of

roughness, for example those of Nikuradse (as reported in Streeter, 1961),

that might permit an estimate of the degree of mixing enhancement that

the boundary layer current might generate flowing over a rough boundary,

as it does in the ocean. If these estimates prove promising, ROMS can

be used to perform eddy–resolving numerical experiments on the turbulent

boundary layer. Similar work has been done on turbulent Ekman layers

(Taylor and Sarkar, 2007), but less attention has been paid to diffusive and

sloping boundary layers. All of these are ways to approach the problem

of coupling the values of ν and κ to the dynamics of the system instead of

imposing them externally, ways of making ν and κ predicted variables instead

of constraints.

There is also the larger question of whether roughness parametrizations

are the best way to capture the mixing the flow generates. It has been sug-

gested that the primary source of enhanced bottom mixing is due overflows,

constrictions, and sills in the canyons. Is there a way to couple the stratified

boundary layer model proposed here to hydraulic models of these overflows?

If so, that might answer another important question that the BBTRE data

suggest, namely what is balancing the along–canyon pressure gradient? One

candidate is form drag, which is greatly enhanced around overflows, but not

over roughness. One idealized model of hydraulically–controlled overflows is

shown in Appendix 2 to this work.

In addition to the question of turbulence generation, there are a number

of other interesting way to continue the work begun here so as to better model

and understand the dynamics of diffusion–driven flow and how they might

play out in the real ocean. First, it would be interesting to deepen the energy

budget presented here to include a thermodynamic analysis of the mechanism

by which internal energy is converted into kinetic energy by density diffu-

sion. It would also be useful to extend the theory here to account for the

effects of rotation. The canyon studied in the BBTRE is narrower than the

local Rossby radius of deformation, which is why it seemed sensible to begin

with a non–rotating theory. However, it may be relatively straight–forward

to include rotation simply by modeling the canyon flow as a channel flow.

In that case, it might be possible for the flow to be in geostrophic balance
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across the canyon while maintaining the dynamics already described along

the canyon, as described for hydraulic channel flows in Pratt and Whitehead

(2007). Additionally, it would be interesting to see how boundary layers

respond to more complicated topographies than the simple broken slope de-

scribed here. What happens when you have both positive and negative slope

curvature? How does the scale of the curvature affect the exchange flow

with the interior? What kind of exchange flow occurs over topography that

matches the spectral characteristics of the ocean bottom? Finally, it might

be informative to simulate some of the flows discussed here in the laboratory.

The generation of a diffusion–driven flow over a non–constant slope would

not be difficult, but it does not appear to have been tried yet in the published

literature, either in laminar or turbulent boundary layers.

6 Appendix 1: Summary of Numerical Ex-

periments

Run Number α1 α2 Vertical Levels Depth (m) Duration (s)
DDF6-02 0.02 0.02 90 1100 2× 105

DDF6-03 0.02 0.04 90 1100 2× 105

DDF6-04 0.01 0.02 80 750 2× 105

DDF6-05 0.005 0.02 80 700 2× 105

DDF6-06 0.02 0.03 95 950 2× 105

DDF6-07 0.01 0.1 105 1165 2× 105

DDF6-08 0.002 0.02 60 670 3× 106

DDF6-09 0.015 0.05 70 1055 4× 105

DDF6-10 0.01 0.05 70 1005 4× 105

DDF6-11 0.005 0.08 70 1452 3× 105

DDF6-12 0.016 0.04 75 1061 4× 105

DDF6-13 0.026 0.061 75 1424 3× 105

DDF6-14 0.022 0.085 75 1685 3× 105

DDF6-15 0.014 0.081 75 1555 3× 105

DDF6-16 0.028 0.035 75 1118 3× 105
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7 Appendix 2: Overflow Calculation

This appendix presents an idealized model of mixing by flow over periodic

sills. It is included with this Masters thesis as an example of the kind of

analysis that might be useful in explaining the sources of mixing observed in

abyssal ocean canyons. It is uses the shallow–water equations to describe an

unstratified, inviscid flow. Unfortunately, it may not be possible to directly

integrate this model of mixing and energy dissipation with the diffusion–

driven flow model discussed in this work, which is dominated by stratification

and diffusion effects. However, it points to a need for further work on the

actual mechanisms of mixing in submarine canyons. It is also noteworthy for

being a periodic inviscid flow, whose only drag comes from form drag.

Begin by considering a two–dimensional topography, periodic in an along–

stream coordinate y, with spatial wavelength λ. This topography is overlaid

onto a constant inclination angle α, as shown in Figure 15. Can we have a

strictly periodic inviscid flow descending over this topography? Assume it is

hydraulically controlled at each sill. Over each period, the gravitational po-

tential energy associated with descending a height αλ is converted to kinetic

energy of the flow, which is dissipated at the hydraulic jump.

We can calculate the energy dissipation at the jump using conservation

rules (Pratt and Whitehead, 2007), begining with the conservation of flux:

Q = vada = vbdb (31)

This is true for any locations ya and yb, but we’ll be most interested in the

dynamics between immediately above and immediately below the jump, as

labeled in Figure 15. We assume that the volume flux Q is known. The next

conservation relationship comes from momentum. Integrate pressure over

the flow cross–section to find:

v2ada +
1

2
gd2a = v2bdb +

1

2
gd2b (32)

Finally, the Bernoulli function B is the total amount of energy in the

flow at a given location. It is the conserved quantity in the shallow water

equation, here shown with a known imposed surface pressure, p0, varying in
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Figure 15: Definition of variables. The thick black line shows the topography,
given by the function h(y). It has overall slope α and spatial period λ. The
water depth is given by the red line, showing an hydraulic jump after each
local topographic maximum.

the along–stream y direction:

v
∂v

∂y︸︷︷︸
0

+ g
∂h

∂y︸︷︷︸
+

+ g
∂d

∂y︸︷︷︸
0

+
1

ρ

∂p0
∂y︸ ︷︷ ︸
−

= 0 (33)

The underbraces indicate the sign we expect each term to take over one

wavelength of the periodic topography if the flow is uphill. Since the so-

lution is periodic, v and d should not change over one wavelength, giving

not net change and zero derivative. The shallow water equation (33) gives a

conserved quantity:

B =
1

2
v2 + gd+ gh+

1

ρ
p0 (34)

B must be conserved everywhere that equation (33) is true. In our case, that

means that it is conserved everywhere except right at the hydraulic jump.

Since energy must be conserved overall, the amount of energy dissipated at

the hydraulic jump must be equal to the change in the Bernoulli function

over one wavelength. That is:

B(ya0)−B(yb0) = B(yb0)−B(yb1) (35)
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Since the flow profile (v, d) is identical for all yb, this implies:

B(ya0)−B(yb0) = g
(
h(yb0)− h(yb1)

)
+

1

ρ

(
p0(yb0)− p0(yb1)

)
= g∆h+

1

ρ
∆p0 (36)

∆h and ∆p0 are the change in pressure and topographic height over one

spatial wavelength λ, and are both known quantities. Similarly, we can

expand the LHS of the above equation:

1

2
v2a+gda+����gh(ya0)+

�
�
�

��1

ρ
p0(ya0)−

(1

2
v2b+gdb+����gh(yb0)+

�
�

�
��1

ρ
p0(yb0)

)
= g∆h+

1

ρ
∆p0

1

2

(
v2a − v2b

)
+ g
(
da − db

)
= g∆h+

1

ρ
∆p0 (37)

The pressure and topographic terms cancel because the hydraulic jump is so

sharp that ya0 ≈ yb0, and the topography and pressure varies on scales much

longer than the width of the jump. We can combine equation (37) with our

conservation of flux and momentum equations (31) and (32) to directly relate

the water depth immediately before and after the hydraulic jump, da and db:

(db − da)3

4dadb
= ∆h+

1

gρ
∆p0 (38)

We need one further constraint to determine the depth of the fluid every-

where in terms of known quantities. We know that the flow is hydraulically

controlled, and as long as there is no bottom friction and p0 is monotonic,

the control section must be at the local maximum topographic height. That

is the Froude number is one at ys:

Fr =
v2s
gds

= 1 (39)

We can therefore express both vs and ds in terms of the known flux Q = vd:

vs = (gQ)
1/3 ; ds =

(
Q2

g

)1/3

(40)
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This gives us the Bernoulli function at the sill purely in terms of known

quantities:

Bs =
3

2
g

2/3Q
2/3 + gh(ys) +

1

ρ
p0(ys) (41)

Since the Bernoulli function is conserved everywhere except at the hydraulic

jump, if we know B(ys1), we know B everywhere from yb0 to ya1. By

equation (34), we know the fluid depth and velocity in that range. Tak-

ing the calculated depth at ya1 and plugging it into equation (37), we get

d(yb1). At every point, we can get v from d using the conservation of flux

Q. Since the solution is periodic, we now know everything about this flow.

Unfortunately, since equation (37) is a non–linear third order polynomial,

it’s not very easy to express the depth or velocity in closed form. However, it

is easy to plot it. Following are some figures showing a pressure–driven flow

up a slope with sinusoidal sills (Figure 16) and gravity–driven flow down a

slope with sawtooth sills (Figure 17).
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Figure 16: Depth and Froude number for three mass fluxes over sinusoidal
topography. Note the weak dependence of the jump location on the flux;
this makes calculating the form drag difficult. In this example there is an
imposed surface pressure with a linear gradient driving the flow up the hill,
from left to right.
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Figure 17: Depth and Froude number for three mass fluxes over sawtooth
topography. In this example there is no imposed surface pressure; all the
energy dissipated in the jumps comes from loss of gravitational potential
energy, as the fluid flows from left to right.
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