990 research outputs found

    Collective Feshbach scattering of a superfluid droplet from a mesoscopic two-component Bose-Einstein condensate

    Full text link
    We examine the collective scattering of a superfluid droplet impinging on a mesoscopic Bose-Einstein condensate (BEC) as a target. The BEC consists of an atomic gas with two internal electronic states, each of which is trapped by a finite-depth external potential. An off-resonant optical laser field provides a localized coupling between the BEC components in the trapping region. This mesoscopic scenario matches the microscopic setup for Feshbach scattering of two particles, when a bound state of one sub-manifold is embedded in the scattering continuum of the other sub-manifold. Within the mean-field picture, we obtain resonant scattering phase shifts from a linear response theory in agreement with an exact numerical solution of the real time scattering process and simple analytical approximations thereof. We find an energy-dependent transmission coefficient that is controllable via the optical field between 0 and 100%.Comment: 4 Latex pages, including 4 figure

    Equivalence of Kinetic Theories of Bose-Einstein Condensation

    Full text link
    We discuss the equivalence of two non-equilibrium kinetic theories that describe the evolution of a dilute, Bose-Einstein condensed atomic gas in a harmonic trap. The second-order kinetic equations of Walser et al. [PRA 63, 013607 (2001)] reduce to the Gross-Pitaevskii equation and the quantum Boltzmann equation in the low and high temperature limits, respectively. These kinetic equations can thus describe the system in equilibrium (finite temperature) as well as in non-equilibrium (real time). We have found this theory to be equivalent to the non-equilibrium Green's function approach originally proposed by Kadanoff and Baym and more recently applied to inhomogeneous trapped systems by M. Imamovi\'c-Tomasovi\'c and A. Griffin [arXiv:cond-mat/9911402].Comment: REVTeX3, 6 pages, 2 eps figures, published version, minor change

    Size-Dependent Bruggeman Approach for Dielectric-Magnetic Composite Materials

    Full text link
    Expressions arising from the Bruggeman approach for the homogenization of dielectric-magnetic composite materials, without ignoring the sizes of the spherical particles, are presented. These expressions exhibit the proper limit behavior. The incorporation of size dependence is directly responsible for the emergence of dielectric-magnetic coupling in the estimated relative permittivity and permeability of the homogenized composite material.Comment: 4 pages, accepted for publication in AEU
    corecore