221 research outputs found

    Is the LITE version of the usability metric for user experience (UMUX-LITE) a reliable tool to support rapid assessment of new healthcare technology?

    Get PDF
    Objective To ascertain the reliability of a standardised, short-scale measure of satisfaction in the use of new healthcare technology i.e., the LITE version of the usability metric for user experience (UMUX-LITE). Whilst previous studies have demonstrated the reliability of UMUX-LITE, and its relationship with measures of likelihood to recommend a product, such as the Net Promoter Score (NPS) in other sectors no such testing has been undertaken with healthcare technology. Materials and methods Six point-of-care products at different stages of development were assessed by 120 healthcare professionals. UMUX-LITE was used to gather their satisfaction in use, and NPS to declare their intention to promote the product. Inferential statistics were used to: i) ascertain the reliability of UMUX-LITE, and ii) assess the relationship between UMUX-LITE and NPS at different stages of products development. Results UMUX-LITE showed an acceptable reliability (α = 0.7) and a strong positive correlation with NPS (r = 0.455, p < .001). This is similar to findings in other fields of application. The level of product development did not affect the UMUX-LITE scores, while the stage of development was a significant predictor (R2 = 0.49) of the intention to promote. Discussion and conclusion Practitioners may apply UMUX-LITE alone, or in combination with the NPS, to complement interview and ‘homemade’ scales to investigate the quality of new products at different stages of development. This shortened scale is appropriate for use in the context of healthcare in which busy professionals have a minimal amount of time to support innovation

    Germline heterozygous DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukemia

    Get PDF
    The Brazilian National Council for Scientific and Technological Development), Bloodwise, Children with Cancer and MRC (Medical Research Council, UK)

    Attitudes towards trusting artificial intelligence insights and factors to prevent the passive adherence of GPs: a pilot study

    Get PDF
    Artificial Intelligence (AI) systems could improve system efficiency by supporting clinicians in making appropriate referrals. However, they are imperfect by nature and misdiagnoses, if not correctly identified, can have consequences for patient care. In this paper, findings from an online survey are presented to understand the aptitude of GPs (n = 50) in appropriately trusting or not trusting the output of a fictitious AI-based decision support tool when assessing skin lesions, and to identify which individual characteristics could make GPs less prone to adhere to erroneous diagnostics results. The findings suggest that, when the AI was correct, the GPs’ ability to correctly diagnose a skin lesion significantly improved after receiving correct AI information, from 73.6% to 86.8% (X2 (1, N = 50) = 21.787, p < 0.001), with significant effects for both the benign (X2 (1, N = 50) = 21, p < 0.001) and malignant cases (X2 (1, N = 50) = 4.654, p = 0.031). However, when the AI provided erroneous information, only 10% of the GPs were able to correctly disagree with the indication of the AI in terms of diagnosis (d-AIW M: 0.12, SD: 0.37), and only 14% of participants were able to correctly decide the management plan despite the AI insights (d-AIW M:0.12, SD: 0.32). The analysis of the difference between groups in terms of individual characteristics suggested that GPs with domain knowledge in dermatology were better at rejecting the wrong insights from AI. View Full-Tex

    Expanding the phenotypic and genetic spectrum of radioulnar synostosis associated hematological disease.

    Get PDF
    Medical Research Council, Children with Cancer and Bloodwise

    Marked overlap of four genetic syndromes with dyskeratosis congenita confounds clinical diagnosis

    Get PDF
    Financial support provided by The Medical Research Council-MR/K000292/1, Children with Cancer- 2013/144 and Blood Wise-14032 (AJW, LC, SC, AE, TV, HT and ID). KMG is supported by the National Institute for Health Research through the NIHR Southampton Biomedical Research Centre

    Rebuilding viable spawner patches of the overfished Spisula solida (Mollusca : Bivalvia): a preliminary contribution to fishery sustainability

    Get PDF
    Populations of commercially important bivalves along the coast of Portugal are depleted as a consequence of natural and anthropogenic causes. A pilot experiment was designed to determine the feasibility of transplanting individuals from natural clam beds to a closed fishing area in an effort to rebuild relatively high-density patches of Spisula solida. For this purpose, clams were equally partitioned into two groups (undersize and legal clams) and transplanted at a density of 40 clams m(-2) into two areas 50 m(2). Transplanted and control clams were sampled to estimate survival, condition index, biochemical composition, and reproductive condition. Generally, the physiological condition of clams was not affected by the method of transplanting. One year after transplanting, survival was 45%. The increase in local abundance of mature clams should facilitate successful fertilization and increase the residual reproductive value of each clam relative to its pre-transplant value. Transplanting undersize clams may be more advantageous because they are more likely to spawn at least once before harvest. The experiments demonstrate that spawner transplants may strengthen S. solida populations and can be used in stock-enhancement programmes which, in conjunction with effective management measures, can contribute to the sustainability of the S. solida fishery.info:eu-repo/semantics/publishedVersio

    Single-Molecule Analysis of the Human Telomerase RNA·Dyskerin Interaction and the Effect of Dyskeratosis Congenita Mutations†

    Get PDF
    It has been proposed that human telomerase RNA (hTR) interacts with dyskerin, prior to assembly of the telomerase holoenzyme. The direct interaction of dyskerin and hTR has not been demonstrated and is an experimentally challenging research problem because of difficulties in expressing and purifying dyskerin in quantities that are useful for biophysical analysis. By orthogonally labeling dyskerin and hTR, we have been able to employ single-molecule two-color coincidence detection (TCCD) to observe directly the formation of a dyskerin·hTR complex. By systematic deletion of hTR subdomains, we have gained insights into the RNA sites required for interaction with dyskerin. We then investigated mutated forms of hTR and dyskerin that are associated with dyskeratosis congenita (DC), on the basis of clinical genetics studies, for their effects on the dyskerin·hTR interaction. Dyskerin mutations associated with X-linked DC resulted in significant impairment of the dyskerin·hTR interaction, whereas mutations in hTR associated with autosomal dominant (AD) DC did not affect the interaction. We propose that disruption of the dyskerin·hTR interaction may contribute to X-linked DC

    Diminished Telomeric 3′ Overhangs Are Associated with Telomere Dysfunction in Hoyeraal-Hreidarsson Syndrome

    Get PDF
    BACKGROUND:Eukaryotic chromosomes end with telomeres, which in most organisms are composed of tandem DNA repeats associated with telomeric proteins. These DNA repeats are synthesized by the enzyme telomerase, whose activity in most human tissues is tightly regulated, leading to gradual telomere shortening with cell divisions. Shortening beyond a critical length causes telomere uncapping, manifested by the activation of a DNA damage response (DDR) and consequently cell cycle arrest. Thus, telomere length limits the number of cell divisions and provides a tumor-suppressing mechanism. However, not only telomere shortening, but also damaged telomere structure, can cause telomere uncapping. Dyskeratosis Congenita (DC) and its severe form Hoyeraal-Hreidarsson Syndrome (HHS) are genetic disorders mainly characterized by telomerase deficiency, accelerated telomere shortening, impaired cell proliferation, bone marrow failure, and immunodeficiency. METHODOLOGY/PRINCIPAL FINDINGS:We studied the telomere phenotypes in a family affected with HHS, in which the genes implicated in other cases of DC and HHS have been excluded, and telomerase expression and activity appears to be normal. Telomeres in blood leukocytes derived from the patients were severely short, but in primary fibroblasts they were normal in length. Nevertheless, a significant fraction of telomeres in these fibroblasts activated DDR, an indication of their uncapped state. In addition, the telomeric 3' overhangs are diminished in blood cells and fibroblasts derived from the patients, consistent with a defect in telomere structure common to both cell types. CONCLUSIONS/SIGNIFICANCE:Altogether, these results suggest that the primary defect in these patients lies in the telomere structure, rather than length. We postulate that this defect hinders the access of telomerase to telomeres, thus causing accelerated telomere shortening in blood cells that rely on telomerase to replenish their telomeres. In addition, it activates the DDR and impairs cell proliferation, even in cells with normal telomere length such as fibroblasts. This work demonstrates a telomere length-independent pathway that contributes to a telomere dysfunction disease
    • …
    corecore