87 research outputs found
Glaucoma and Alzheimer: Neurodegenerative disorders show an adrenergic dysbalance
Glaucoma disease is characterized by an increased intraocular pressure (IOP), glaucomatous alterations of the optic disc and corresponding visual field defects. Even lowering the main risk factor IOP until an individual target level does not prevent this neurodegenerative disorder from proceeding. Several autoimmune mechanisms were discovered, partly showing a functionality. One of these autoimmune phenomena targets the ß2-adrenergic receptor (ß2-AR; i.e. agonistic autoantibodies; ß2-agAAb) and is linked to an elevated IOP and an impaired retinal microcirculation. As neurodegenerative disorder, Alzheimer’s Disease (AD) is postulated to share a common molecular mechanism with glaucoma. In the present study we investigated autoimmune phenomena targeting the ß2-AR in patients with AD. Sera of the patients were analyzed in a rat cardiomyocyte bioassay for the presence of functional autoantibodies against ß2-AR. In addition, different species of amyloid beta (Aß) monomers were tested (Aß1-14, Aß10-25, Aβ10–37 Aß1-40, Aß1-42, Aβ28–40, and Aß-[Pyr]3–43). Our results demonstrate that none of the short-chain Aß (Aß1-14, Aß10-25, or Aβ28–40) showed any agonistic or inhibitory effect on ß2-AR. Contrary, long-chain Aß-[Pyr]3–43, representing a major neurogenic plaque component, exerted an activation that after blocking by the ß2-AR antagonist ICI118.551, could be identified as that the effect was realized via the ß2-AR. Moreover, the long chain Aß1-40, Aβ1–42, and Aβ10–37, yet not the short-chain Aß peptides prevented the clenbuterol induced desensitization of the ß2-AR. In addition, we identified functional autoantibodies in the sera of AD patients, activating the ß2-AR, like the ß2-agAAb found in patients with glaucoma. As autoimmune mechanisms were reportedly involved in the pathogenesis of glaucoma and Alzheimer’s Disease, we postulate that overstimulation of the ß2-AR pathway can induce an adrenergic overdrive, that may play an important role in the multifactorial interplay of neurodegenerative disorders
Functional autoantibodies against G protein-coupled receptors in hepatic and pulmonary hypertensions in human schistosomiasis
IntroductionSchistosomiasis (SM) is a parasitic disease caused by Schistosoma mansoni. SM causes chronic inflammation induced by parasitic eggs, with collagen/fibrosis deposition in the granuloma process in the liver, spleen, central nervous system, kidneys, and lungs. Pulmonary arterial hypertension (PAH) is a clinical manifestation characterized by high pressure in the pulmonary circulation and right ventricular overload. This study investigated the production of functional autoantibodies (fAABs) against the second loop of the G-protein-coupled receptor (GPCR) in the presence of hepatic and PAH forms of human SM.MethodsUninfected and infected individuals presenting acute and chronic manifestations (e.g., hepatointestinal, hepato-splenic without PAH, and hepato-splenic with PAH) of SM were clinically evaluated and their blood was collected to identify fAABs/GPCRs capable of recognizing endothelin 1, angiotensin II, and a-1 adrenergic receptor. Human serum was analyzed in rat cardiomyocytes cultured in the presence of the receptor antagonists urapidil, losartan, and BQ123.ResultsThe fAABs/GPCRs from chronic hepatic and PAH SM individuals, but not from acute SM individuals, recognized the three receptors. In the presence of the antagonists, there was a reduction in beating rate changes in cultured cardiomyocytes. In addition, binding sites on the extracellular domain functionality of fAABs were identified, and IgG1 and/or IgG3 antibodies were found to be related to fAABs.ConclusionOur data suggest that fAABs against GPCR play an essential role in vascular activity in chronic SM (hepatic and PAH) and might be involved in the development of hypertensive forms of SM
Autoantibodies Activating the β2-Adrenergic Receptor Characterize Patients With Primary and Secondary Glaucoma
Recently, agonistic autoantibodies (agAAb) activating the β2-adrenergic receptor were detected in primary open-angle glaucoma (POAG) or ocular hypertension (OHT) patients and were linked to intraocular pressure (IOP) (1). The aim of the present study was to quantify β2-agAAb in the sera of glaucoma suspects and patients with primary and secondary glaucoma. Patients with OHT (n = 33), pre-perimetric POAG (pre-POAG; n = 11), POAG (n = 28), and 11 secondary OAG (SOAG) underwent ophthalmological examinations including examinations with Octopus G1 perimetry and morphometry. Twenty-five healthy individuals served as controls. Serum-derived IgG samples were analyzed for β2-agAAb using a functional bioassay. The beat-rate-increase of spontaneously beating cultured neonatal rat cardiomyocytes was monitored with 1.6 beats/15 s as cut-off. None of the sera of normal subjects showed β2-agAAb. In POAG or OHT patients increased beating rates of 4.1 ± 2.2 beats/15 s, and 3.7 ± 2.8 beats/15 s were detected (p > 0.05). Glaucoma patients with (POAG) and without perimetric (pre-POAG) defects did not differ (pre-POAG 4.4 ± 2.6 beats/15 s, POAG 4.1 ± 2.0 beats/15 s, p > 0.05). Patients with SOAG yielded mean beating rates of 4.7 ± 1.7 beats/15 s (p > 0.05). β2-agAAb were seen in 73% of OHT, 82% of pre-POAG, 82% of POAG, and 91% SOAG patients (p 0.05). The robust β2-agAAb seropositivity in patients with OHT, pre-POAG, POAG, and SOAG suggest a primary common role for β2-agAAb starting early in glaucoma pathophysiology and turned out to be a novel marker identifying all patients with increased IOP independent of glaucoma stage and entity
α1A-Adrenergic Receptor-Directed Autoimmunity Induces Left Ventricular Damage and Diastolic Dysfunction in Rats
BACKGROUND: Agonistic autoantibodies to the alpha(1)-adrenergic receptor occur in nearly half of patients with refractory hypertension; however, their relevance is uncertain. METHODS/PRINCIPAL FINDINGS: We immunized Lewis rats with the second extracellular-loop peptides of the human alpha(1A)-adrenergic receptor and maintained them for one year. Alpha(1A)-adrenergic antibodies (alpha(1A)-AR-AB) were monitored with a neonatal cardiomyocyte contraction assay by ELISA, and by ERK1/2 phosphorylation in human alpha(1A)-adrenergic receptor transfected Chinese hamster ovary cells. The rats were followed with radiotelemetric blood pressure measurements and echocardiography. At 12 months, the left ventricles of immunized rats had greater wall thickness than control rats. The fractional shortening and dp/dt(max) demonstrated preserved systolic function. A decreased E/A ratio in immunized rats indicated a diastolic dysfunction. Invasive hemodynamics revealed increased left ventricular end-diastolic pressures and decreased dp/dt(min). Mean diameter of cardiomyocytes showed hypertrophy in immunized rats. Long-term blood pressure values and heart rates were not different. Genes encoding sarcomeric proteins, collagens, extracellular matrix proteins, calcium regulating proteins, and proteins of energy metabolism in immunized rat hearts were upregulated, compared to controls. Furthermore, fibrosis was present in immunized hearts, but not in control hearts. A subset of immunized and control rats was infused with angiotensin (Ang) II. The stressor raised blood pressure to a greater degree and led to more cardiac fibrosis in immunized, than in control rats. CONCLUSIONS/SIGNIFICANCE: We show that alpha(1A)-AR-AB cause diastolic dysfunction independent of hypertension, and can increase the sensitivity to Ang II. We suggest that alpha(1A)-AR-AB could contribute to cardiovascular endorgan damage
Immunoadsorption for Treatment of Patients with Suspected Alzheimer Dementia and Agonistic Autoantibodies against Alpha1a-Adrenoceptor—Rationale and Design of the IMAD Pilot Study
Background: agonistic autoantibodies (agAABs) against G protein-coupled receptors (GPCR) have been linked to cardiovascular disease. In dementia patients, GPCR-agAABs against the α1- and ß2-adrenoceptors (α1AR- and ß2AR) were found at a prevalence of 50%. Elimination of agAABs by immunoadsorption (IA) was successfully applied in cardiovascular disease. The IMAD trial (Efficacy of immunoadsorption for treatment of persons with Alzheimer dementia and agonistic autoantibodies against alpha1A-adrenoceptor) investigates whether the removal of α1AR-AABs by a 5-day IA procedure has a positive effect (improvement or non-deterioration) on changes of hemodynamic, cognitive, vascular and metabolic parameters in patients with suspected Alzheimer’s clinical syndrome within a one-year follow-up period. Methods: the IMAD trial is designed as an exploratory monocentric interventional trial corresponding to a proof-of-concept phase-IIa study. If cognition capacity of eligible patients scores 19–26 in the Mini Mental State Examination (MMSE), patients are tested for the presence of agAABs by an enzyme-linked immunosorbent assay (ELISA)-based method, followed by a bioassay-based confirmation test, further screening and treatment with IA and intravenous immunoglobulin G (IgG) replacement. We aim to include 15 patients with IA/IgG and to complete follow-up data from at least 12 patients. The primary outcome parameter of the study is uncorrected mean cerebral perfusion measured in mL/min/100 gr of brain tissue determined by magnetic resonance imaging with arterial spin labeling after 12 months. Conclusion: IMAD is an important pilot study that will analyze whether the removal of α1AR-agAABs by immunoadsorption in α1AR-agAAB-positive patients with suspected Alzheimer’s clinical syndrome may slow the progression of dementia and/or may improve vascular functional parameters
“Multisystem Inflammatory Syndrome in Children”-Like Disease after COVID-19 Vaccination (MIS-V) with Potential Significance of Functional Active Autoantibodies Targeting G-Protein-Coupled Receptors (GPCR-fAAb) for Pathophysiology and Therapy
Background: An infection with SARS-CoV-2 can trigger a systemic disorder by pathological autoimmune processes. A certain type of this dysregulation is known as Multisystemic inflammatory syndrome in children (MIS-C). However, similar symptoms may occur and have been described as Multisystemic inflammatory syndrome after SARS-CoV-2 Vaccination (MIS-V) following vaccination against SARS-CoV-2. We report the case of a 12-year-old boy who was identified with MIS-C symptoms without previous SARS-CoV-2 infection after receiving two doses of the Pfizer–BioNTech COVID-19 vaccine approximately one month prior to the onset of symptoms. He showed polyserositis, severe gastrointestinal symptoms and, consequently, a manifestation of a multiorgan failure. IgG antibodies against spike proteins of SARS-CoV-2 were detected, indicating a successful vaccination, while SARS-CoV-2 Nucleocapsid protein antibodies and SARS-CoV-2 PCR were not detected. Several functional, active autoantibodies against G-protein-coupled receptors (GPCR-fAAb), previously associated with Long COVID disease, were detected in a cardiomyocyte bioassay. Immunosuppression with steroids was initiated. Due to side effects, treatment with steroids and later interleukin 1 receptor antagonists had to be terminated. Instead, immunoadsorption was performed and continued with tacrolimus and mycophenolic acid therapy, leading to improvement and discharge after 79 days. GPCR-fAAb decreased during therapy and remained negative after clinical curing and under continued immunosuppressive therapy with tacrolimus and mycophenolic acid. Follow-up of the patient showed him in good condition after one year. Conclusions: Infection with SARS-CoV-2 shows a broad and severe variety of symptoms, partly due to autoimmune dysregulation, which, in some instances, can lead to multiorgan failure. Despite its rarity, post-vaccine MIS-C-like disease may develop into a serious condition triggered by autoimmune dysregulation. The evidence of circulating GPCR-fAAb and their disappearance after therapy suggests a link of GPCR-fAAb to the clinical manifestations. Thus, we hypothesize a potential role of GPCR-fAAb in pathophysiology and their potential importance for the therapy of MIS-C or MIS-V. However, this observation needs further investigation to prove a causative correlation.</jats:p
Potential Relevance of α1-Adrenergic Receptor Autoantibodies in Refractory Hypertension
-AAB might have a mechanistic role and could represent a therapeutic target. in cardiomyocytes and induce mesentery artery segment contraction.-AAB in hypertensive patients, and the notion of immunity as a possible cause of hypertension
Case Report: Neutralization of Autoantibodies Targeting G-Protein-Coupled Receptors Improves Capillary Impairment and Fatigue Symptoms After COVID-19 Infection
Clinical features of Coronavirus disease 2019 (COVID-19) are caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Acute infection management is a substantial healthcare issue, and the development of long-Covid syndrome (LCS) is extremely challenging for patients and physicians. It is associated with a variety of characteristics as impaired capillary microcirculation, chronic fatigue syndrome (CFS), proinflammatory cytokines, and functional autoantibodies targeting G-protein-coupled receptors (GPCR-AAbs). Here, we present a case report of successful healing of LCS with BC 007 (Berlin Cures, Berlin, Germany), a DNA aptamer drug with a high affinity to GPCR-AAbs that neutralizes these AAbs. A patient with a documented history of glaucoma, recovered from mild COVID-19, but still suffered from CFS, loss of taste, and impaired capillary microcirculation in the macula and peripapillary region. He was positively tested for various targeting GPCR-AAbs. Within 48 h after a single BC 007 treatment, GPCR-AAbs were functionally inactivated and remained inactive during the observation period of 4 weeks. This observation was accompanied by constant improvement of the fatigue symptoms of the patient, taste, and retinal capillary microcirculation. Therefore, the removal of GPCR-AAb might ameliorate the characteristics of the LCD, such as capillary impairment, loss of taste, and CFS
C-Reactive Protein (CRP) Blocks the Desensitization of Agonistic Stimulated G Protein Coupled Receptors (GPCRs) in Neonatal Rat Cardiomyocytes
Recently, C-reactive protein (CRP) was shown to affect intracellular calcium signaling and blood pressure in vitro and in vivo, respectively. The aim of the present study was to further investigate if a direct effect on G-protein coupled receptor (GPCR) signaling by CRP can be observed by using CRP in combination with different GPCR agonists on spontaneously beating cultured neonatal rat cardiomyocytes. All used agonists (isoprenaline, clenbuterol, phenylephrine, angiotensin II and endothelin 1) affected the beat rate of cardiomyocytes significantly and after washing them out and re-stimulation the cells developed a pronounced desensitization of the corresponding receptors. CRP did not affect the basal beating-rate nor the initial increase/decrease in beat-rate triggered by different agonists. However, CRP co-incubated cells did not exhibit desensitization of the respective GPCRs after the stimulation with the different agonists. This lack of desensitization was independent of the GPCR type, but it was dependent on the CRP concentration. Therefore, CRP interferes with the desensitization of GPCRs and has to be considered as a novel regulator of adrenergic, angiotensin-1 and endothelin receptors
Activating autoantibodies against G protein-coupled receptors in narcolepsy type 1
Study objectives: Narcolepsy type 1 is a rare hypersomnia of central origin, which is caused by loss of hypothalamic neurons that produce the neuropeptides hypocretin-1 and -2. Hypocretin-containing nerve terminals are found in areas known to play a central role in autonomic control and in pain signaling. Cholinergic M2 receptors are found in brain areas involved with the occurrence of hallucinations and cataplexy. In addition to classical symptoms of narcolepsy, the patients suffer frequently from autonomic dysfunction, chronic pain, and hypnagogic/hypnopompic hallucinations. We aimed to test whether narcolepsy type 1 patients have autoantibodies against autonomic beta 2 adrenergic receptor, M2 muscarinic receptors, or nociception receptors. Methods: We tested the serum of ten narcolepsy type 1 patients (five female) for activating beta 2 adrenergic receptor autoantibodies, M2 muscarinic receptor autoantibodies, and nociception receptor autoantibodies. Results: Ten of ten patients were positive for muscarinic M2 receptor autoantibodies (P <0.001), 9/10 were positive for autoantibodies against nociception receptors (P <0.001), and 5/10 were positive for beta 2 adrenergic receptor autoantibodies (P <0.001). Conclusions: Narcolepsy type 1 patients harbored activating autoantibodies against M2 muscarinic receptors, nociception receptors, and beta 2 adrenergic receptors. M2 receptor autoantibodies may be related to the occurrence of cataplexy and, moreover, hallucinations in narcolepsy since they are found in the same brain areas that are involved with these symptoms. The occurrence of nociception receptor autoantibodies strengthens the association between narcolepsy type 1 and pain. The connection between narcolepsy type 1, autonomic complaints, and the presumed cardiovascular morbidity might be associated with the occurrence of beta 2 adrenergic receptor autoantibodies. On the other hand, the presence of the autoantibodies may be secondary to the destruction of the hypocretin pathways. (C) 2020 Elsevier B.V. All rights reserved.Peer reviewe
- …