160 research outputs found
Isotopic ratios at z=0.68 from molecular absorption lines toward B 0218+357
Isotopic ratios of heavy elements are a key signature of the nucleosynthesis
processes in stellar interiors. The contribution of successive generations of
stars to the metal enrichment of the Universe is imprinted on the evolution of
isotopic ratios over time. We investigate the isotopic ratios of carbon,
nitrogen, oxygen, and sulfur through millimeter molecular absorption lines
arising in the z=0.68 absorber toward the blazar B 0218+357. We find that these
ratios differ from those observed in the Galactic interstellar medium, but are
remarkably close to those in the only other source at intermediate redshift for
which isotopic ratios have been measured to date, the z=0.89 absorber in front
of PKS1830-211. The isotopic ratios in these two absorbers should reflect
enrichment mostly from massive stars, and they are indeed close to the values
observed toward local starburst galaxies. Our measurements set constraints on
nucleosynthesis and chemical evolution models.Comment: Accepted for publication in Astronomy & Astrophysics; 10 pages, 9
figure
Quantum phases in entropic dynamics
In the Entropic Dynamics framework the dynamics is driven by maximizing
entropy subject to appropriate constraints. In this work we bring Entropic
Dynamics one step closer to full equivalence with quantum theory by identifying
constraints that lead to wave functions that remain single-valued even for
multi-valued phases by recognizing the intimate relation between quantum
phases, gauge symmetry, and charge quantization.Comment: Presented at MaxEnt 2017, the 37th International Workshop on Bayesian
Inference and Maximum Entropy Methods in Science and Engineering (July 9-14,
2017, Jarinu, Brazil
Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis
A method combining laser-induced fluorescence and principal component analysis to detect and discriminate between algal and fungal growth on insulator materials has been studied. Eight fungal cultures and four insulator materials have been analyzed. Multivariate classifications were utilized to characterize the insulator material, and fungal growth could readily be distinguished from a clean surface. The results of the principal component analyses make it possible to distinguish between algae infected, fungi infected, and clean silicone rubber materials. The experiments were performed in the laboratory using a fiber-optic fluorosensor that consisted of a nitrogen laser and an optical multi-channel analyzer system
Chlorine-bearing molecules in molecular absorbers at intermediate redshifts
We use observations of chlorine-bearing species in molecular absorbers at intermediate redshifts to investigate chemical properties and Cl-35/Cl-37 isotopic ratios in the absorbing sightlines. Chloronium (H2Cl+) is detected along three independent lines of sight in the z = 0.89 and z = 0.68 molecular absorbers located in front of the lensed quasars PKS 1830-211 and B 0218+357, respectively. Hydrogen chloride (HCl) was observed only toward PKS 1830-211, and is found to behave differently from H2Cl+. It is detected in one line of sight with an abundance ratio [H2Cl+]/[HCl] similar to 1, but remains undetected in the other, more diffuse, line of sight, with a ratio [H2Cl+] / [HCl] > 17. The absorption profiles of these two chlorine-bearing species are compared to other species and discussed in terms of the physical properties of the absorbing gas. Our findings are consistent with the picture emerging from chemical models where different species trace gas with different molecular hydrogen fraction. The Cl-35/Cl-37 isotopic ratios are measured in the different lines of sight and are discussed in terms of stellar nucleosynthesis
A classical explanation of quantization
In the context of our recently developed emergent quantum mechanics, and, in
particular, based on an assumed sub-quantum thermodynamics, the necessity of
energy quantization as originally postulated by Max Planck is explained by
means of purely classical physics. Moreover, under the same premises, also the
energy spectrum of the quantum mechanical harmonic oscillator is derived.
Essentially, Planck's constant h is shown to be indicative of a particle's
"zitterbewegung" and thus of a fundamental angular momentum. The latter is
identified with quantum mechanical spin, a residue of which is thus present
even in the non-relativistic Schroedinger theory.Comment: 20 pages; version accepted for publication in Foundations of Physic
Quantum measurement in a family of hidden-variable theories
The measurement process for hidden-configuration formulations of quantum
mechanics is analysed. It is shown how a satisfactory description of quantum
measurement can be given in this framework. The unified treatment of
hidden-configuration theories, including Bohmian mechanics and Nelson's
stochastic mechanics, helps in understanding the true reasons why the problem
of quantum measurement can succesfully be solved within such theories.Comment: 16 pages, LaTeX; all special macros are included in the file; a
figure is there, but it is processed by LaTe
Thermodynamic Gravity and the Schrodinger Equation
We adopt a 'thermodynamical' formulation of Mach's principle that the rest
mass of a particle in the Universe is a measure of its long-range collective
interactions with all other particles inside the horizon. We consider all
particles in the Universe as a 'gravitationally entangled' statistical ensemble
and apply the approach of classical statistical mechanics to it. It is shown
that both the Schrodinger equation and the Planck constant can be derived
within this Machian model of the universe. The appearance of probabilities,
complex wave functions, and quantization conditions is related to the
discreetness and finiteness of the Machian ensemble.Comment: Minor corrections, the version accepted by Int. J. Theor. Phy
Recommended from our members
Autoantibody Signature for the Serologic Detection of Ovarian Cancer
Sera from patients with ovarian cancer contain autoantibodies (AAb) to tumor-derived proteins that are potential biomarkers for early detection. To detect AAb, we probed high-density programmable protein microarrays (NAPPA) expressing 5177 candidate tumor antigens with sera from patients with serous ovarian cancer (n = 34 cases/30 controls) and measured bound IgG. Of these, 741 antigens were selected and probed with an independent set of ovarian cancer sera (n = 60 cases/60 controls). Twelve potential autoantigens were identified with sensitivities ranging from 13 to 22% at >93% specificity. These were retested using a Luminex bead array using 60 cases and 60 controls, with sensitivities ranging from 0 to 31.7% at 95% specificity. Three AAb (p53, PTPRA, and PTGFR) had area under the curve (AUC) levels >60% (p < 0.01), with the partial AUC (SPAUC) over 5 times greater than for a nondiscriminating test (p < 0.01). Using a panel of the top three AAb (p53, PTPRA, and PTGFR), if at least two AAb were positive, then the sensitivity was 23.3% at 98.3% specificity. AAb to at least one of these top three antigens were also detected in 7/20 sera (35%) of patients with low CA 125 levels and 0/15 controls. AAb to p53, PTPRA, and PTGFR are potential biomarkers for the early detection of ovarian cancer
Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke.
Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation
- …