332 research outputs found
Research on Social Engagement with a Rabbitic User Interface
Companions as interfaces to smart rooms need not only to be easy to interact with, but also to maintain long-term relationships with their users. The FP7-funded project SERA (Social Engagement with Robots and Agents) contributes to knowledge about and modeling of such relationships. One focal activity is an iterative field study to collect real-life long-term interaction data with a robotic interface. The first stage of this study has been completed. This paper reports on the set-up and the first insights
Mach bands and multiscale models of spatial vision:the role of first, second, and third derivative operators in encoding bars and edges
Ernst Mach observed that light or dark bands could be seen at abrupt changes of luminance gradient in the absence of peaks or troughs in luminance. Many models of feature detection share the idea that bars, lines, and Mach bands are found at peaks and troughs in the output of even-symmetric spatial filters. Our experiments assessed the appearance of Mach bands (position and width) and the probability of seeing them on a novel set of generalized Gaussian edges. Mach band probability was mainly determined by the shape of the luminance profile and increased with the sharpness of its corners, controlled by a single parameter (n). Doubling or halving the size of the images had no significant effect. Variations in contrast (20%-80%) and duration (50-300 ms) had relatively minor effects. These results rule out the idea that Mach bands depend simply on the amplitude of the second derivative, but a multiscale model, based on Gaussian-smoothed first- and second-derivative filtering, can account accurately for the probability and perceived spatial layout of the bands. A key idea is that Mach band visibility depends on the ratio of second- to first-derivative responses at peaks in the second-derivative scale-space map. This ratio is approximately scale-invariant and increases with the sharpness of the corners of the luminance ramp, as observed. The edges of Mach bands pose a surprisingly difficult challenge for models of edge detection, but a nonlinear third-derivative operation is shown to predict the locations of Mach band edges strikingly well. Mach bands thus shed new light on the role of multiscale filtering systems in feature coding
Partnership Approaches to Learning: A Seven-country Study
â– This article explores the role of trade unions in innovative learning partnerships. Formal framework partnerships suffer from implementation problems and a lack of focus on worker needs, in contrast to local learning partnerships that address the specific interests of workers displaced through restructuring. The key challenges facing unions are the types of skills addressed, coordination issues across learning partnerships and building the union skills needed to work in partnership
Mach edges: a critical test of the nonlinear 3rd derivative model for edge-detection
Feature detection is a crucial stage of visual processing. In previous feature-marking experiments we found that peaks in the 3rd derivative of the luminance profile can signify edges where there are no 1st derivative peaks nor 2nd derivative zero-crossings (Wallis and George 'Mach edges' (the edges of Mach bands) were nicely predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test of the model, we now use a new class of stimuli, formed by adding a linear luminance ramp to the blurred triangle waves used previously. The ramp has no effect on the second or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing only one edge as the added ramp gradient increases. In experiment 1, subjects judged whether one or two edges were visible on each trial. In experiment 2, subjects used a cursor to mark perceived edges and bars. The position and polarity of the marked edges were close to model predictions. Both experiments produced the predicted shift from two to one Mach edge, but the shift was less complete than predicted. We conclude that the model is a useful predictor of edge perception, but needs some modification
Mach edges: a key role for 3rd derivative filters in spatial vision
Edges are key points of information in visual scenes. One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (first-derivative) filter, or as zero-crossings (ZCs) in the second-derivative. A variety of multi-scale models are based on this idea. We tested this approach by devising a stimulus that has no local peaks of gradient and no ZCs, at any scale. Our stimulus profile is analogous to the classic Mach-band stimulus, but it is the local luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux. The luminance profile is a smoothed triangle wave and is obtained by integrating the gradient profile. Subjects used a cursor to mark the position and polarity of perceived edges. For all the ramp-widths tested, observers marked edges at or close to the corner points in the gradient profile, even though these were not gradient maxima. These new Mach edges correspond to peaks and troughs in the third-derivative. They are analogous to Mach bands - light and dark bars are seen where there are no luminance peaks but there are peaks in the second derivative. Here, peaks in the third derivative were seen as light-to-dark edges, troughs as dark-to-light edges. Thus Mach edges are inconsistent with many standard edge detectors, but are nicely predicted by a new model that uses a (nonlinear) third-derivative operator to find edge points
Third-derivative filters predict edge locations in spatial vision
Edge detection is crucial in visual processing. Previous computational and psychophysical models have often used peaks in the gradient or zero-crossings in the 2nd derivative to signal edges. We tested these approaches using a stimulus that has no such features. Its luminance profile was a triangle wave, blurred by a rectangular function. Subjects marked the position and polarity of perceived edges. For all blur widths tested, observers marked edges at or near 3rd derivative maxima, even though these were not 1st derivative maxima or 2nd derivative zero-crossings, at any scale. These results are predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test, we added a ramp of variable slope to the blurred triangle-wave luminance profile. The ramp has no effect on the (linear) 2nd or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing one edge as the ramp gradient increases. Results of two experiments confirmed such a shift, thus supporting the new model. [Supported by the Engineering and Physical Sciences Research Council]
Binocular fusion, suppression and diplopia for blurred edges
Purpose: (1) To devise a model-based method for estimating the probabilities of binocular fusion, interocular suppression and diplopia from psychophysical judgements, (2) To map out the way fusion, suppression and diplopia vary with binocular disparity and blur of single edges shown to each eye, (3) To compare the binocular interactions found for edges of the same vs opposite contrast polarity. Methods: Test images were single, horizontal, Gaussian-blurred edges, with blur BÂ =Â 1-32Â min arc, and vertical disparity 0-8.B, shown for 200Â ms. In the main experiment, observers reported whether they saw one central edge, one offset edge, or two edges. We argue that the relation between these three response categories and the three perceptual states (fusion, suppression, diplopia) is indirect and likely to be distorted by positional noise and criterion effects, and so we developed a descriptive, probabilistic model to estimate both the perceptual states and the noise/criterion parameters from the data. Results: (1) Using simulated data, we validated the model-based method by showing that it recovered fairly accurately the disparity ranges for fusion and suppression, (2) The disparity range for fusion (Panum's limit) increased greatly with blur, in line with previous studies. The disparity range for suppression was similar to the fusion limit at large blurs, but two or three times the fusion limit at small blurs. This meant that diplopia was much more prevalent at larger blurs, (3) Diplopia was much more frequent when the two edges had opposite contrast polarity. A formal comparison of models indicated that fusion occurs for same, but not opposite, polarities. Probability of suppression was greater for unequal contrasts, and it was always the lower-contrast edge that was suppressed. Conclusions: Our model-based data analysis offers a useful tool for probing binocular fusion and suppression psychophysically. The disparity range for fusion increased with edge blur but fell short of complete scale-invariance. The disparity range for suppression also increased with blur but was not close to scale-invariance. Single vision occurs through fusion, but also beyond the fusion range, through suppression. Thus suppression can serve as a mechanism for extending single vision to larger disparities, but mainly for sharper edges where the fusion range is small (5-10Â min arc). For large blurs the fusion range is so much larger that no such extension may be needed
Word Mode: a crowding-free reading protocol for individuals with macular disease
Central retinal loss through macular disease markedly reduces the ability to read largely because identification of a word using peripheral vision is negatively influenced by nearby text, a phenomenon termed visual crowding. Here, we present a novel peripheral reading protocol, termed Word Mode, that eliminates crowding by presenting each word in isolation but in a position that mimics its natural position in the line of text being read, with each new word elicited using a self-paced button press. We used a gaze-contingent paradigm to simulate a central scotoma in four normally-sighted observers, and measured oral reading speed for text positioned 7.5° in the inferior field. Compared with reading whole sentences, our crowding-free protocol increased peripheral reading speeds by up to a factor of seven, resulted in significantly fewer reading errors and fixations per sentence, and reduced both the critical print size and the text size required for spot reading by 0.2–0.3 logMAR. We conclude that the level of reading efficiency afforded by the crowding-free reading protocol Word Mode may return reading as a viable activity to many individuals with macular disease
The slope of the psychometric function and non-stationarity of thresholds in spatiotemporal contrast vision
The slope of the two-interval, forced-choice psychometric function (e.g. the Weibull parameter, ß) provides valuable information about the relationship between contrast sensitivity and signal strength. However, little is known about how or whether ß varies with stimulus parameters such as spatiotemporal frequency and stimulus size and shape. A second unresolved issue concerns the best way to estimate the slope of the psychometric function. For example, if an observer is non-stationary (e.g. their threshold drifts between experimental sessions), ß will be underestimated if curve fitting is performed after collapsing the data across experimental sessions. We measured psychometric functions for 2 experienced observers for 14 different spatiotemporal configurations of pulsed or flickering grating patches and bars on each of 8 days. We found ß ˜ 3 to be fairly constant across almost all conditions, consistent with a fixed nonlinear contrast transducer and/or a constant level of intrinsic stimulus uncertainty (e.g. a square law transducer and a low level of intrinsic uncertainty). Our analysis showed that estimating a single ß from results averaged over several experimental sessions was slightly more accurate than averaging multiple estimates from several experimental sessions. However, the small levels of non-stationarity (SD ˜ 0.8 dB) meant that the difference between the estimates was, in practice, negligible
Seeing light vs dark lines: psychophysical performance is based on separate channels, limited by noise and uncertainty
Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection
- …