Mach Edges: A key role for 3rd derivative filters

University

School of Life \& Health Sciences, Aston University, Birmingham, UK \qquad

1. Introduction to edge detection:

Edges are key points of information in visual scenes. But, how are they extracted from the eye's neural output?
It is widely accepted that the retinal image is filtered by evenand odd-symmetric spatial operators of various scales, early in and odd-symmetric spal the visual pathway [1].
Early psychophysical work proposed an edge-detector role for odd-symmetric operators and an edge-detector role for oddsymmetric operators [2]. However, such a simple interpretation
is incomplete, as edge-detectors also respond to bars, and bar is incomplete, as edge-detectors also respond to bars, and bar detectors also respond to edges, placed as shown here.
Another view of these operators is to consider that their role is to compute the spatial gradients and higher derivatives of the image [1]. For the odd-symmetric operator shown here, this process can be illustrated as follows..

A horizontal section through the odd-symmetric profile shown above produces the profile shown here (left). This can be simplified to two adjacent regions of positive and negative response. If the output of these two regions is summed, this is equivalent to obtaining the difference in luminance between these two regions. If this operator is 'swept along' (convolved with) a 1-D image so that it makes this comparison between every point and its neighbour then the output at every point is proportional to the rate of change of luminance, i.e. its 1 st derivative.

| +1 | | A similar argument
 applies to obtain
 operators that compute
 the 2nd, 3rd or any higher
 derivative, but with
 different weights applied
 to different regions. | Simplified 2nd
 derivative operator | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SUM | | | | |

One important class of models supposes that edges correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and troughs in the response of a gradient (first derivative) filter [3], or as zero-crossings (ZCs) in the second derivative [4]. A variety of multi-scale models are based on this idea [5-8].
2. Our approach: the 3rd derivative

3rd derivative operator

A new approach is to consider the 3rd derivative of the luminance profile. This operator also produces a peak or trough at each edge. We have devised stimuli that have peaks in the 3rd derivative but no corresponding peaks in the 1st derivative or ZCs in the 2nd derivative.

Question: Will subjects see edges at 3rd derivative peaks?

3. Stimuli design:

Mach band image
Experimental image

The stimuli had no local peaks of gradient and no ZCs, at any scale. Our stimulus profile is analogous to the classic Mach band stimulus, but it is the luminance gradient (not the absolute luminance) that increases as a linear ramp between two plateaux.

Stimuli generation:

 - The starting point was a single period of a trapezoidal wave whose walls were $1,2,4,8,16,32$ or 64 pixels wide(rampwidth) shown here in the 1 st (rampwidth), shown here in the 1 st
derivative profile. This defined the derivative profile. This defined the gradient profile of the stimulus. - The resulting waveform was then integrated to form the luminance profile.

- Note that the waveform now has peaks in the 3rd derivative but none in the 1st, and no zero-crossings in the 2nd derivative.
- Image size was 256 by 256 pixels (4 degrees).
- Surrounded by a full-screen mid grey. - Viewed at contrasts of 0.2 or 0.4. - Wavefors were also invered obtain opposite polarity images.

4. Procedure:

Procedure:

- Flashing presentation (duration 0.3 s , isi 0.6 s)
-7 rampwidths $\times 2$ contrast levels $\times 2$ polarities $=28$ conditions
- 3 subjects
- The task was to mark the position and polarity of all edges
- The marker comprised two black dots, each of 1×3 pixels, vertically
arranged, each 32 pixels ($1 / 2$ degree) from image midline -Subjects were instructed to fixate midway between the dots

Image with marker dots

5.Results:

Results were similar for all 3 subjects so are shown averaged.

Main Results

- Subjects reliably see edges flanking the luminance peaks
- Their polarity is as predicted
- Their positions (data points) are close to 3rd derivative peaks and troughs (solid lines)
- Data are reliable \sim Error bars are ± 1 se and are plotted behind data points
Conclusion
The use of the 3rd derivative is strongly supported.

Secondary Result

Edges appeared slightly more separated for the 0 polarity conditions (upper right) than the 180 polarity conditions (right).

Conclusion

This appears to be an example of the Helmholtz irradiation effect [9], which is neutralised by averaging across phase (left).
Note that 1 st derivative peaks predict no edges here. They predict edges at ± 60 pixels for all rampwidths - not marked by subjects.

6. Add optical and neural blur:

The shift of the data away from the 3rd derivative prediction at low rampwidths can be explained by optical and neural blur. This should have maximum effect at small scales
A small amount of Gaussian blur ($\sigma=4 \mathrm{~min}$ arc) was applied to the luminance waveforms before derivatives were obtained. This could represent the combination of optical blur and the scale of the filter used by the subject. The 3rd derivative now fits the data better at low rampwidths.

7. Control experiment ~ step edges:

Sharp-edged bar

with blur still resolve dedges that are close together?
To test this, we applied the same feature-marking method to images containing sharp-edged bars whose widths were comparable to experiment 1.

Results

Fit was better with $\sigma=1.5 \mathrm{~min}$ arc than with $\sigma=4 \mathrm{~min}$ arc. Conclusion
Subjects apply smaller scale operators (less neural blur) for sharp-edges than for more blurred edges.

8. Discussion:

Edges are 3rd derivative peaks

The edges seen here are a new phenomenon - Mach Edges - analogous to the classic Mach Bands. There is no peak in the gradient profile that would indicate their existence.
Mach Edges strongly support the use of the 3rd derivative in edge-finding, but defeat 1 st \& 2 nd derivative models.

Problem of spurious edges

Not all peaks and troughs in the 3rd derivatives signify edges, as the central peak or trough is spanned by two others of opposite sign. This suggests that some form o
 rectification is needed. A single half-wave rectifier will
not suffice, as it would remove the trough that indicates a dark-to-light edge (see right edge shown here). However, this problem of spurious peaks is solved by a new model that uses a nonlinear 3rd derivative, incorporating 2 stages of rectification [12]. This returns the lower plot shown here.

References:

1. Bruce,V. et al 2003, Visual Perception: physiology, psychology and ecology. 4th Hove: Psychology Press.
2. Kulikowski, J.J. \& King-Smith, P.E. 1973, Vision Research, 13 (8), 1455-1478
3. Canny ,J. 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 8, 679-698.
4. Marr 1980, Vision. San Francisco: Freeman and Co.
5. Watt, R.J. \& Morgan, M.J. 1985, Vision Research, 25 (11), 1661-1674.
6. Bergholm. F. 1987, IFEE Transactions On Pattern Anysis and
7. Bergholm, F. 1987, IEEE Transactions On Pattern Analysis and Machine Intelligence, 9 (6), 726-741
8. Morrone, M.C. et al, 1995, Pattern Recognition Letters, 16 (7), 667-677.
9. Mather \&. \& Zucker, S.W. 1998, IEEE Transactions On Pattern Analysis and Machine Intelligence, 20 (9), 699-716.
10.
11. Croner \& Kaplan 1985, Vision Research, 26 (6), 1107-1015.
12. Poirier \& Guplan 1995, Vision Research, 35 (1), 7-25.
13. Georgeson 2006, Journal of Vision, 6, (6), 191
