27 research outputs found

    Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum

    Get PDF
    BACKGROUND: With the completion of the genome sequence for rice (Oryza sativa L.), the focus of rice genomics research has shifted to the comparison of the rice genome with genomes of other species for gene cloning, breeding, and evolutionary studies. The genus Oryza includes 23 species that shared a common ancestor 8–10 million years ago making this an ideal model for investigations into the processes underlying domestication, as many of the Oryza species are still undergoing domestication. This study integrates high-throughput, hybridization-based markers with BAC end sequence and fingerprint data to construct physical maps of rice chromosome 1 orthologues in two wild Oryza species. Similar studies were undertaken in Sorghum bicolor, a species which diverged from cultivated rice 40–50 million years ago. RESULTS: Overgo markers, in conjunction with fingerprint and BAC end sequence data, were used to build sequence-ready BAC contigs for two wild Oryza species. The markers drove contig merges to construct physical maps syntenic to rice chromosome 1 in the wild species and provided evidence for at least one rearrangement on chromosome 1 of the O. sativa versus Oryza officinalis comparative map. When rice overgos were aligned to available S. bicolor sequence, 29% of the overgos aligned with three or fewer mismatches; of these, 41% gave positive hybridization signals. Overgo hybridization patterns supported colinearity of loci in regions of sorghum chromosome 3 and rice chromosome 1 and suggested that a possible genomic inversion occurred in this syntenic region in one of the two genomes after the divergence of S. bicolor and O. sativa. CONCLUSION: The results of this study emphasize the importance of identifying conserved sequences in the reference sequence when designing overgo probes in order for those probes to hybridize successfully in distantly related species. As interspecific markers, overgos can be used successfully to construct physical maps in species which diverged less than 8 million years ago, and can be used in a more limited fashion to examine colinearity among species which diverged as much as 40 million years ago. Additionally, overgos are able to provide evidence of genomic rearrangements in comparative physical mapping studies

    Evaluation and selection of internal reference genes from two- and six-row U.S. malting barley varieties throughout micromalting for use in RT-qPCR.

    No full text
    Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a popular method for measuring transcript abundance. The most commonly used method of interpretation is relative quantification and thus necessitates the use of normalization controls (i.e. reference genes) to standardize transcript abundance. The most popular gene targets for RT-qPCR are housekeeping genes because they are thought to maintain a static transcript level among a variety of samples. However, more recent studies have shown, several housekeeping genes are not reliably stable. This is the first study to examine the potential of several reference genes for use in RT-qPCR normalization during barley malting. The process of malting barley mechanizes the imbibition and subsequent germination of barley seeds under controlled conditions. Malt quality is controlled by many pleiotropic genes that are determined by examining the result of physiological changes the barley seed undergoes during the malting process. We compared the stability of 13 reference genes across both two-and six-row malting barleys (Conrad and Legacy, respectfully) throughout the entirety of the malting process. Initially, primer target specificity, amplification efficiency and average Ct values were determined for each of the selected primer pairs. Three statistical programs (geNorm, NormFinder, and BestKeeper) were used to rank the stability of each reference gene. Rankings were similar between the two- and six-row with the exception of BestKeeper's ranking of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). A consensus ranking among programs was determined using RefFinder. Our results show that Actin (ACT) and Heat Shock Protein 70 (HSP70) were the most stable throughout micromalting, while GAPDH and Cyclophilin (CYP) were the least stable. Two reference genes are necessary for stable transcript normalization according to geNorm and the best two reference genes (ACT and HSP70) provided a sufficient level of stability

    Chromosome-Level Homeology in Paleopolyploid Soybean (Glycine max) Revealed Through Integration of Genetic and Chromosome Maps

    No full text
    Soybean has 20 chromosome pairs that are derived from at least two rounds of genomewide duplication or polyploidy events although, cytogenetically, soybean behaves like a diploid and has disomic inheritance for most loci. Genetically anchored genomic clones were used as probes for fluorescence in situ hybridization (FISH) to determine the level of postpolyploid chromosomal rearrangements and to integrate the genetic and physical maps to (1) assign linkage groups to specific chromosomes, (2) assess chromosomal structure, and (3) determine the distribution of recombination along the length of a chromosome. FISH mapping of seven putatively gene-rich BACs from linkage group L (chromosome 19) revealed that most of the genetic map correlates to the highly euchromatic long arm and that there is extensive homeology with another chromosome pair, although colinearity of some loci does appear to be disrupted. Moreover, mapping of BACs containing high-copy sequences revealed sequestration of high-copy repeats to the pericentromeric regions of this chromosome. Taken together, these data present a model of chromosome structure in a highly duplicated but diploidized eukaryote, soybean

    Gene expression stability values of 13 reference candidate genes using BestKeeper.

    No full text
    <p>Gene expression stability values of genes from the least stable (<i>left</i>) to the most stable (<i>right</i>) for (A) two-row barley, (B) six-row barley, and (C) all samples (two- and six-row combined).</p

    Barley candidate reference genes and primer sequences.

    No full text
    <p>Barley candidate reference genes and primer sequences.</p

    Gene expression stability values using NormFinder.

    No full text
    <p>Gene expression stability values from least stable (<i>left</i>) to most stable (<i>right</i>) for (A) two-row barley, (B) six-row barley, and (C) all samples (two- and six-row combined).</p

    Ct distribution of 13 candidate reference genes.

    No full text
    <p>Values are given as the cycle threshold (Ct). Expression levels of the different genes tested are shown as the 25<sup>th</sup> and 75<sup>th</sup> quartiles (upper and lower hinges), median (central horizontal lines) and whiskers. Whiskers represent maximum and minimum Ct values. Genes are shown from the most (lower Ct, <i>left</i>) to the least abundantly expressed (higher Ct, <i>right</i>).</p

    QTL mapping of shoot and seed traits impacted by Drought in Barley using a recombinant inbred line Population

    No full text
    Abstract Background With ongoing climate change, drought events are severely limiting barley production worldwide and pose a significant risk to the malting, brewing and food industry. The genetic diversity inherent in the barley germplasm offers an important resource to develop stress resiliency. The purpose of this study was to identify novel, stable, and adaptive Quantitative Trait Loci (QTL), and candidate genes associated with drought tolerance. A recombinant inbred line (RIL) population (n = 192) developed from a cross between the drought tolerant ‘Otis’ barley variety, and susceptible ‘Golden Promise’(GP) was subjected to short-term progressive drought during heading in the biotron. This population was also evaluated under irrigated and rainfed conditions in the field for yields and seed protein content. Results Barley 50k iSelect SNP Array was used to genotype the RIL population to elucidate drought-adaptive QTL. Twenty-three QTL (eleven for seed weight, eight for shoot dry weight and four for protein content) were identified across several barley chromosomes. QTL analysis identified genomic regions on chromosome 2 and 5 H that appear to be stable across both environments and accounted for nearly 60% variation in shoot weight and 17.6% variation in seed protein content. QTL at approximately 29 Mbp on chromosome 2 H and 488 Mbp on chromosome 5 H are in very close proximity to ascorbate peroxidase (APX) and in the coding sequence of the Dirigent (DIR) gene, respectively. Both APX and DIR are well-known key players in abiotic stress tolerance in several plants. In the quest to identify key recombinants with improved tolerance to drought (like Otis) and good malting profiles (like GP), five drought tolerant RILs were selected for malt quality analysis. The selected drought tolerant RILs exhibited one or more traits that were outside the realms of the suggested limits for acceptable commercial malting quality. Conclusions The candidate genes can be used for marker assisted selection and/or genetic manipulation to develop barley cultivars with improved tolerance to drought. RILs with genetic network reshuffling necessary to generate drought tolerance of Otis and favorable malting quality attributes of GP may be realized by screening a larger population

    Conservation and purifying selection of transcribed genes located in a rice centromere

    No full text
    Recombination is strongly suppressed in centromeric regions. In chromosomal regions with suppressed recombination, deleterious mutations can easily accumulate and cause degeneration of genes and genomes. Surprisingly, the centromere of chromosome8 (Cen8) of rice (Oryza sativa) contains several transcribed genes. However, it remains unclear as to what selective forces drive the evolution and existence of transcribed genes in Cen8. Sequencing of orthologous Cen8 regions from two additional Oryza species, Oryza glaberrima and Oryza brachyantha, which diverged from O. sativa 1 and 10 million years ago, respectively, revealed a set of seven transcribed Cen8 genes conserved across all three species. Chromatin immunoprecipitation analysis with the centromere-specific histone CENH3 confirmed that the sequenced orthologous regions are part of the functional centromere. All seven Cen8genes have undergone purifying selection, representing a striking phenomenon of active gene survival within a recombination-free zone over a long evolutionary time. The coding sequences of the Cen8 genes showed sequence divergence and mutation rates that were significantly reduced from those of genes located on the chromosome arms. This suggests that Oryza has a mechanism to maintain the fidelity and functionality of Cen8 genes, even when embedded in a sea of repetitive sequences and transposable elements
    corecore