8 research outputs found

    Angiotensin II, a Neuropeptide at the Frontier between Endocrinology and Neuroscience: Is There a Link between the Angiotensin II Type 2 Receptor and Alzheimer’s Disease?

    Get PDF
    Amyloid-β peptide deposition, abnormal hyperphosphorylation of tau, as well as inflammation and vascular damage, are associated with the development of Alzheimer’s disease (AD). Angiotensin II (Ang II) is a peripheral hormone, as well as a neuropeptide, which binds two major receptors, namely the Ang II type 1 receptor (AT1R) and the type 2 receptor (AT2R). Activation of the AT2R counteracts most of the AT1R-mediated actions, promoting vasodilation, decreasing the expression of pro-inflammatory cytokines, both in the brain and in the cardiovascular system. There is evidence that treatment with AT1R blockers (ARBs) attenuates learning and memory deficits. Studies suggest that the therapeutic effects of ARBs may reflect this unopposed activation of the AT2R in addition to the inhibition of the AT1R. Within the context of AD, modulation of AT2R signaling could improve cognitive performance not only through its action on blood flow/brain microcirculation but also through more specific effects on neurons. This review summarizes the current state of knowledge and potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT2R activation by non-peptide and highly selective agonists, acting on neuronal plasticity, could represent new pharmacological tools that may help improve impaired cognitive performance in AD and other neurological cognitive disorders

    Design, Synthesis and Biological Evaluation of Selective Nonpeptide AT2 Receptor Agonists and Antagonists

    No full text
    The G protein-coupled receptors (GPCRs) are important targets in drug discovery. In several cases, the endogenous ligands that activate the GPCRs of pharmaceutical interest are peptides. Unfortunately, peptides are in general not suitable as drugs, since the peptide structure is associated with several disadvantages, such as low oral bioavailability, rapid degradation and low receptor subtype selectivity. Thus, there is a strong need for drug-like nonpeptide ligands to peptide-activated GPCRs. However, to discover nonpeptide ligands that mimic the effect of the endogenous peptide, i.e. peptidomimetics, is a tremendous challenge. In fact, morphine and the related opioids were the only known examples of peptidomimetics before 1995 and these ligands were known long before the native endogenous peptide ligands were discovered. The main objective of the work described in this thesis was to design, synthesize and biologically evaluate selective nonpeptide agonists to the peptide-activated GPCR AT2. The AT2 receptor belongs to the renin–angiotensin system, where the octapeptide angiotensin II (Ang II) is the major effector peptide. Ang II mediates its effects through the two GPCRs AT1 and AT2. The AT1 receptor is already an established target in the treatment of hypertension. The physiological role of the AT2 receptor, which is up-regulated in certain pathological conditions, is not fully understood but it seems to include positive effects such as vasodilatation, tissue repair, tissue regeneration and neuronal differentiation. In the current investigation we started from the nonpeptide and nonselective (AT1/ AT2) compound L-162,313. This ligand is a known AT1 receptor agonist but its effect on the AT2 receptor was unknown at the start of this project. We were able to show that it acts as an agonist also at the AT2 receptor. Furthermore, stepwise synthetic modifications of L-162,313 led to the identification of the first selective nonpeptide AT2 receptor agonist. Following the discovery of this compound several selective nonpeptide AT2 receptor agonists were identified. It was also revealed that a minor structural alteration of one of these compounds interconverted the functional activity from agonism to antagonism. The structural requirement for agonism vs antagonism was therefore studied. The functionality switch was suggested, at least partly, to be due to the spatial relationship between the methyleneimidazole group and the isobutyl side chain of the compounds. To further investigate the bioactive conformation(s) of this series of compounds enantiomerically pure analogues with conformationally constrained isobutyl chains were prepared. This study revealed that the direction of the isobutyl side chain determine whether the compounds act as agonists or antagonists at the AT2 receptor. Further investigations are required to fully elucidate the bioactive conformation(s) of these nonpeptide AT2 receptor agonists. We believe that the selective nonpeptide AT2 receptor agonists and antagonists identified in this thesis will serve as important research tools in the continuing investigation of the physiological role of the AT2 receptor. We also believe that these drug-like compounds might provide potential leads in drug discovery processes

    N-Aryl Isoleucine Derivatives as Angiotensin II AT(2) Receptor Ligands

    No full text
    A novel series of ligands for the recombinant human AT(2) receptor has been synthesized utilizing a fast and efficient palladium-catalyzed procedure for aminocarbonylation as the key reaction. Molybdenum hexacarbonyl [Mo(CO)(6)] was employed as the carbon monoxide source, and controlled microwave heating was applied. The prepared N-aryl isoleucine derivatives, encompassing a variety of amide groups attached to the aromatic system, exhibit binding affinities at best with K-i values in the low micromolar range versus the recombinant human AT(2) receptor. Some of the new nonpeptidic isoleucine derivatives may serve as starting points for further structural optimization. The presented data emphasize the importance of using human receptors in drug discovery programs

    One-Pot, Two-Step, Microwave-Assisted Palladium-Catalyzed Conversion of Aryl Alcohols to Aryl Fluorides via Aryl Nonaflates

    No full text
    A convenient procedure for converting aryl alcohols to aryl fluorides via aryl nonafluorobutylsulfonates (ArONf) is presented. Moderate to good one-pot, two-step yields were achieved by this nonaflation and microwave-assisted, palladium-catalyzed fluorination sequence. The reductive elimination step was investigated by DFT calculations to compare fluorination with chlorination, proving a larger thermodynamic driving force for the aryl fluoride product. Finally, a key aryl fluoride intermediate for the synthesis of a potent HCV NS3 protease inhibitor was smoothly prepared with the novel protocol

    High affinity rigidified AT(2) receptor ligands with indane scaffolds

    No full text
    Rigidification of the isobutyl side chain of drug-like AT(2) receptor agonists and antagonists that are structurally related to the first reported selective AT(2) receptor agonist 1 (C21) delivered bioactive indane derivatives. Four enantiomer pairs were synthesized and the enantiomers were isolated in an optical purity >99%. The enantiomers 7a, 7b, 8a, 8b, 9a, 9b, 10a and 10b bind to the AT(2) receptor with moderate (K-i = 54-223 nM) to high affinity (K-i = 2.2-7.0 nM). The enantiomer with positive optical rotation (+) exhibited the highest affinity at the receptor. The indane derivatives 7b and 10a are among the most potent AT(2) receptor antagonists reported so far. As illustrated by the enantiomer pairs 7a/b and 10a/b, an alteration at the stereogenic center has a pronounced impact on the activation process of the AT(2) receptor, and can convert agonists to antagonists and vice versa

    Interconversion of Functional Activity by Minor Structural Alterations in Nonpeptide AT<sub>2</sub> Receptor Ligands

    No full text
    Migration of the methylene imidazole side chain in the first reported selective drug-like AT<sub>2</sub> receptor agonist C21/M024 (<b>1</b>) delivered the AT<sub>2</sub> receptor antagonist C38/M132 (<b>2</b>). We now report that the AT<sub>2</sub> receptor antagonist compound <b>4</b>, a biphenyl derivative that is structurally related to <b>2</b>, is transformed to the agonist <b>6</b> by migration of the isobutyl group. The importance of the relative position of the methylene imidazole and the isobutyl substituent is highlighted herein
    corecore