3,984 research outputs found
Engine non-containment: UK risk assessment methods
More realistic guideline data must be developed for use in aircraft design in order to comply with recent changes in British civil airworthiness requirements. Unrealistically pessimistic results were obtained when the methodology developed during the Concorde SST certification program was extended to assess catastrophic risks resulting from uncontained engine rotors
Journal Staff
Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape
Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: real-time synchrotron simulations
We model the emission of high energy photons due to relativistic charged
particle motion in intense laser-plasma interactions. This is done within a
particle-in-cell code, for which high frequency radiation normally cannot be
resolved due to finite time steps and grid size. A simple expression for the
synchrotron radiation spectra is used together with a Monte-Carlo method for
the emittance. We extend previous work by allowing for arbitrary fields,
considering the particles to be in instantaneous circular motion due to an
effective magnetic field. Furthermore we implement noise reduction techniques
and present validity estimates of the method. Finally, we perform a rigorous
comparison to the mechanism of radiation reaction, and find the emitted energy
to be in excellent agreement with the losses calculated using radiation
reaction
The Effect of Columnar Disorder on the Superconducting Transition of a Type-II Superconductor in Zero Applied Magnetic Field
We investigate the effect of random columnar disorder on the superconducting
phase transition of a type-II superconductor in zero applied magnetic field
using numerical simulations of three dimensional XY and vortex loop models. We
consider both an unscreened model, in which the bare magnetic penetration
length is approximated as infinite, and a strongly screened model, in which the
magnetic penetration length is of order the vortex core radius. We consider
both equilibrium and dynamic critical exponents. We show that, as in the
disorder free case, the equilibrium transitions of the unscreened and strongly
screened models lie in the same universality class, however scaling is now
anisotropic. We find for the correlation length exponent , and
for the anisotropy exponent . We find different dynamic
critical exponents for the unscreened and strongly screened models.Comment: 30 pages 12 ps figure
- …