144 research outputs found

    Microbial adaptations to envrionmental change: a moving target for global change ecology

    Full text link

    Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. Acknowledgements: We thank Drs. Yolima Carrillo and Feike Dijkstra for providing experimental facilities. We also thank Dr. Marcus Brock and Mark Schimelpfenig for laboratory assistance. This material is based upon work supported by the US Department of Agriculture, US Department of Energy's Office of Science (BER), through the Terrestrial Ecosystem Science program, and by the National Science Foundation (DEB# 1021559). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.Peer reviewedPublisher PD

    Managing Agroecosystems for Soil Microbial Carbon Use Efficiency: Ecological Unknowns, Potential Outcomes, and a Path Forward

    Get PDF
    Agricultural systems are increasingly managed for improving soil carbon (C) accumulation. However, there are limits to C returns in agricultural systems that constrain soil C accumulation capacity. Increasing the efficiency of how soil microbes process C is gaining interest as an important management strategy for increasing soil C and is a key feature of soil C dynamics in many new microbial-explicit models. A higher microbial C use efficiency (CUE) may increase C storage while reducing C system losses and is a fundamental trait affecting community assembly dynamics and nutrient cycling. However, the numerous ecological unknowns influencing CUE limit our ability to effectively manage CUE in agricultural soils for greater soil C storage. In this perspective, we consider three complex drivers of agroecosystem CUE that need to be resolved to develop effective C sequestration management practices in the future: (1) the environment as an individual trait moderator versus a filter, (2) microbial community competitive and faciliatory interactions, and (3) spatiotemporal dynamics through the soil profile and across the microbial lifecycle. We highlight ways that amendments, crop rotations, and tillage practices might affect microbial CUE conditions and the variable outcomes of these practices. We argue that to resolve some of the unknowns of CUE dynamics, we need to include more mechanistic, trait-based approaches that capitalize on advanced methods and innovative field research designs within an agroecosystem-specific context. By identifying the management-level determinants of CUE expression, we will be better positioned to optimize CUE to increase soil C storage in agricultural systems

    Managing Agroecosystems for Soil Microbial Carbon Use Efficiency: Ecological Unknowns, Potential Outcomes, and a Path Forward

    Get PDF
    Agricultural systems are increasingly managed for improving soil carbon (C) accumulation. However, there are limits to C returns in agricultural systems that constrain soil C accumulation capacity. Increasing the efficiency of how soil microbes process C is gaining interest as an important management strategy for increasing soil C and is a key feature of soil C dynamics in many new microbial-explicit models. A higher microbial C use efficiency (CUE) may increase C storage while reducing C system losses and is a fundamental trait affecting community assembly dynamics and nutrient cycling. However, the numerous ecological unknowns influencing CUE limit our ability to effectively manage CUE in agricultural soils for greater soil C storage. In this perspective, we consider three complex drivers of agroecosystem CUE that need to be resolved to develop effective C sequestration management practices in the future: (1) the environment as an individual trait moderator versus a filter, (2) microbial community competitive and faciliatory interactions, and (3) spatiotemporal dynamics through the soil profile and across the microbial lifecycle. We highlight ways that amendments, crop rotations, and tillage practices might affect microbial CUE conditions and the variable outcomes of these practices. We argue that to resolve some of the unknowns of CUE dynamics, we need to include more mechanistic, trait-based approaches that capitalize on advanced methods and innovative field research designs within an agroecosystem-specific context. By identifying the management-level determinants of CUE expression, we will be better positioned to optimize CUE to increase soil C storage in agricultural systems

    Within-species trade-offs in plant-stimulated soil enzyme activity and growth, flowering, and seed size

    Full text link
    Soil microbial communities affect species demographic rates of plants. In turn, plants influence the composition and function of the soil microbiome, potentially resulting in beneficial feedbacks that alter their fitness and establishment. For example, differences in the ability to stimulate soil enzyme activity among plant lineages may affect plant growth and reproduction. We used a common garden study to test differences in plant-stimulated soil enzyme activity between lineages of the same species across developmental stages. Lineages employed different strategies whereby growth, days to flowering and seed size traded-off with plant-stimulated soil enzyme activity. Specifically, the smaller seeded lineage stimulated more enzyme activity at the early stage of development and flowered earlier while the larger seeded lineage sustained lower but consistent enzyme activity through development. We suggest that these lineages, which are both successful invaders, employ distinct strategies (a colonizer and a competitor) and differ in their influence on soil microbial activity. Synthesis. The ability to influence the soil microbial community by plants may be an important trait that trades off with growth, flowering, and seed size for promoting plant establishment, reproduction, and invasion

    Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests

    Get PDF
    BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not. CONCLUSIONS/SIGNIFICANCE: Although some soil characteristics were unaffected by tree species identity, our results clearly demonstrate that these dominant tree species are associated with soils that differ in several physical, chemical, and biotic properties. Ongoing environmental changes in this region, e.g. changes in fire regime, frequency of insect outbreaks, changes in precipitation patterns and snowpack, and land-use change, may alter the relative abundance of these tree species over coming decades, which in turn will likely alter the soils

    Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    Get PDF
    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease

    Phosphorus mobilizing consortium Mammoth P enhances plant growth

    Get PDF
    Global agricultural productivity may be constrained by the finite and limited supply of phosphorus (P), adding to the challenges in meeting the projected needs of a growing human population in the coming decades. In addition, when P fertilizers are added to soils, they can become bound to soils resulting in low fertilizer efficiency. However, P-mobilizing bacteria could potentially liberate soil-bound P, resulting in a higher plant P uptake and increased yield. Bacteria can mobilize P through several mechanisms, suggesting that consortia of P-bacteria may be more effective than single species. Species diversity can have a synergistic, or non-additive, effect on ecosystem functioning ("the whole is more than the sum of its parts") but rarely is the microbial community structure intentionally managed to improve plant nutrient uptake. We investigated whether inoculation of soils with a four-species bacterial community developed to mobilize soil P could increase plant productivity. In wheat and turf trials, we found that Mammoth P was able to deliver yields equivalent to those achieved using conventional fertilizer applications. Herbs and fruits showed that the combination of fertilizer with Mammoth P significantly increased productivity -in some cases productivity doubled. Metabolites produced by the Mammoth P consortium led to increased yields in some cases, suggesting that microbial products (produced in the absence of plants) played a role in enhancing plant productivity. Results from these trials indicate substantial potential of Mammoth P to enhance P supply to plants, improving P fertilizer use-efficiency and increasing agricultural productivity. 19 Agricultural productivity may be constrained in the 21 st Century by the finite supply of global a 20 phosphorus (P), adding to the challenges in meeting the projected needs of a growing human population 21 in the coming decades. In addition, when P fertilizers are added to soils, they can become bound to soils 22 resulting in low fertilizer efficiency. However, bacteria have the ability to mobilize soil bound P through 23 several mechanisms potentially resulting in a higher plant P uptake and increased yield. Furthermore, 24 species diversity can have a synergistic effect on ecosystem functioning ("the whole is more than the sum 25 of its parts") suggesting that bacterial communities, or consortia, may be more effective than single 26 species. However, in agriculture management practices, rarely is the soil microbial community structure 27 effectively manipulated to improve plant nutrient uptake. We investigated whether inoculation of soils 28 with a bacterial consortium developed to mobilize soil P named Mammoth P could increase plant 29 productivity. In turf, herbs and fruits, we showed that the combination of conventional inorganic fertilizer 30 combined with Mammoth P increased productivity up to twofold compared to the fertilizer treatments 31 without the Mammoth P inoculant. In wheat trials, we found that Mammoth P by itself was able to deliver 32 yields equivalent to those achieved with conventional inorganic fertilizer applications. The metabolites 33 produced by the consortium in Mammoth P likely played a role in enhancing plant productivity. Results 34 from this study indicate the substantial potential of Mammoth P to enhance P supply to plants, improving 35 P fertilizer use-efficiency and increasing agricultural productivity. 3

    Differential Growth Responses of Soil Bacterial Taxa to Carbon Substrates of Varying Chemical Recalcitrance

    Get PDF
    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin–protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition
    corecore