8,979 research outputs found

    Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation

    Get PDF
    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment

    Algorithmic Debugging of Real-World Haskell Programs: Deriving Dependencies from the Cost Centre Stack

    Get PDF
    Existing algorithmic debuggers for Haskell require a transformation of all modules in a program, even libraries that the user does not want to debug and which may use language features not supported by the debugger. This is a pity, because a promising ap- proach to debugging is therefore not applicable to many real-world programs. We use the cost centre stack from the Glasgow Haskell Compiler profiling environment together with runtime value observations as provided by the Haskell Object Observation Debugger (HOOD) to collect enough information for algorithmic debugging. Program annotations are in suspected modules only. With this technique algorithmic debugging is applicable to a much larger set of Haskell programs. This demonstrates that for functional languages in general a simple stack trace extension is useful to support tasks such as profiling and debugging

    Tunneling conductance in strained graphene-based superconductor: Effect of asymmetric Weyl-Dirac fermions

    Full text link
    Based on the BTK theory, we investigate the tunneling conductance in a uniaxially strained graphene-based normal metal (NG)/ barrier (I)/superconductor (SG) junctions. In the present model, we assume that depositing the conventional superconductor on the top of the uniaxially strained graphene, normal graphene may turn to superconducting graphene with the Cooper pairs formed by the asymmetric Weyl-Dirac electrons, the massless fermions with direction-dependent velocity. The highly asymmetrical velocity, vy/vx>>1, may be created by strain in the zigzag direction near the transition point between gapless and gapped graphene. In the case of the highly asymmetrical velocity, we find that the Andreev reflection strongly depends on the direction and the current perpendicular to the direction of strain can flow in the junction as if there was no barrier. Also, the current parallel to the direction of strain anomalously oscillates as a function of the gate voltage with very high frequency. Our predicted result is found as quite different from the feature of the quasiparticle tunneling in the unstrained graphene-based NG/I/SG conventional junction. This is because of the presence of the direction-dependent-velocity quasiparticles in the highly strained graphene system.Comment: 18 pages, 7 Figures; Eq.13 and 14 are correcte

    The stability of a cubic fixed point in three dimensions from the renormalization group

    Full text link
    The global structure of the renormalization-group flows of a model with isotropic and cubic interactions is studied using the massive field theory directly in three dimensions. The four-loop expansions of the \bt-functions are calculated for arbitrary NN. The critical dimensionality Nc=2.89±0.02N_c=2.89 \pm 0.02 and the stability matrix eigenvalues estimates obtained on the basis of the generalized Padeˊ\acute{\rm e}-Borel-Leroy resummation technique are shown to be in a good agreement with those found recently by exploiting the five-loop \ve-expansions.Comment: 18 pages, LaTeX, 5 PostScript figure

    The Importance of Audit Firm Characteristics and the Drivers of Auditor Change in UK Listed Companies

    Get PDF
    This paper explores the importance of audit firm characteristics and the factors motivating auditor change based on questionnaire responses from 210 listed UK companies (a response rate of 70%). Twenty-nine potentially desirable auditor characteristics are identified from the extant literature and their importance elicited. Exploratory factor analysis reduces these variables to eight uncorrelated underlying dimensions: reputation/quality; acceptability to third parties; value for money; ability to provide non-audit services; small audit firm; specialist industry knowledge; non-Big Six large audit firm; and geographical proximity. Insights into the nature of 'the Big Six factor' emerge. Two thirds of companies had recently considered changing auditors; the main reasons cited being audit fee level, dissatisfaction with audit quality and changes in top management. Of those companies that considered change, 73% did not actually do so, the main reasons cited being fee reduction by the incumbent and avoidance of disruption. Thus audit fee levels are both a key precipitator of change and a key factor in retaining the status quo

    Effects of collision cascade density on radiation defect dynamics in 3C-SiC

    Get PDF
    Effects of the collision cascade density on radiation damage in SiC remain poorly understood. Here, we study damage buildup and defect interaction dynamics in 3C-SiC bombarded at 100 °C with either continuous or pulsed beams of 500 keV Ne, Ar, Kr, or Xe ions. We find that bombardment with heavier ions, which create denser collision cascades, results in a decrease in the dynamic annealing efficiency and an increase in both the amorphization cross-section constant and the time constant of dynamic annealing. The cascade density behavior of these parameters is non-linear and appears to be uncorrelated. These results demonstrate clearly (and quantitatively) an important role of the collision cascade density in dynamic radiation defect processes in 3C-SiC

    Strong electron-phonon coupling in delta-phase stabilized Pu

    Full text link
    Heat capacity measurements of the delta-phase stabilized alloy Pu-Al suggest that strong electron-phonon coupling is required to explain the moderate renormalization of the electronic density of states near the Fermi energy. We calculate the heat capacity contributions from the lattice and electronic degrees of freedom as well as from the electron-lattice coupling term and find good overall agreement between experiment and theory assuming a dimensionless electron-phonon coupling parameter of order unity, lambda ~ 0.8. This large electron-phonon coupling parameter is comparable to reported values in other superconducting metals with face-centered cubic crystal structure, for example, Pd (lambda ~ 0.7) and Pb (lambda ~ 1.5). Further, our analysis shows evidence of a sizable residual low-temperature entropy contribution, S_{res} ~ 0.4 k_B (per atom). We can fit the residual specific heat to a two-level system. Therefore, we speculate that the observed residual entropy originates from crystal-electric field effects of the Pu atoms or from self-irradiation induced defects frozen in at low temperatures.Comment: 9 pages, 11 figures, to appear in Phys. Rev.
    • …
    corecore