510 research outputs found

    Compression and intelligence: social environments and communication

    Full text link
    Compression has been advocated as one of the principles which pervades inductive inference and prediction - and, from there, it has also been recurrent in definitions and tests of intelligence. However, this connection is less explicit in new approaches to intelligence. In this paper, we advocate that the notion of compression can appear again in definitions and tests of intelligence through the concepts of `mind-reading¿ and `communication¿ in the context of multi-agent systems and social environments. Our main position is that two-part Minimum Message Length (MML) compression is not only more natural and effective for agents with limited resources, but it is also much more appropriate for agents in (co-operative) social environments than one-part compression schemes - particularly those using a posterior-weighted mixture of all available models following Solomonoff¿s theory of prediction. We think that the realisation of these differences is important to avoid a naive view of `intelligence as compression¿ in favour of a better understanding of how, why and where (one-part or two-part, lossless or lossy) compression is needed.We thank the anonymous reviewers for their helpful comments, and we thank Kurt Kleiner for some challenging and ultimately very helpful questions in the broad area of this work. We also acknowledge the funding from the Spanish MEC and MICINN for projects TIN2009-06078-E/TIN, Consolider-Ingenio CSD2007-00022 and TIN2010-21062-C02, and Generalitat Valenciana for Prometeo/2008/051.Dowe, DL.; Hernández Orallo, J.; Das, PK. (2011). Compression and intelligence: social environments and communication. En Artificial General Intelligence. Springer Verlag (Germany). 6830:204-211. https://doi.org/10.1007/978-3-642-22887-2_21S2042116830Chaitin, G.J.: Godel’s theorem and information. International Journal of Theoretical Physics 21(12), 941–954 (1982)Dowe, D.L.: Foreword re C. S. Wallace. Computer Journal 51(5), 523–560 (2008); Christopher Stewart WALLACE (1933-2004) memorial special issueDowe, D.L.: Minimum Message Length and statistically consistent invariant (objective?) Bayesian probabilistic inference - from (medical) “evidence”. Social Epistemology 22(4), 433–460 (2008)Dowe, D.L.: MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: Bandyopadhyay, P.S., Forster, M.R. (eds.) Handbook of the Philosophy of Science. Philosophy of Statistics, vol. 7, pp. 901–982. Elsevier, Amsterdam (2011)Dowe, D.L., Hajek, A.R.: A computational extension to the Turing Test. Technical Report #97/322, Dept Computer Science, Monash University, Melbourne, Australia, 9 pp (1997)Dowe, D.L., Hajek, A.R.: A non-behavioural, computational extension to the Turing Test. In: Intl. Conf. on Computational Intelligence & multimedia applications (ICCIMA 1998), Gippsland, Australia, pp. 101–106 (February 1998)Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information 9(4), 447–466 (2000)Hernández-Orallo, J.: Constructive reinforcement learning. International Journal of Intelligent Systems 15(3), 241–264 (2000)Hernández-Orallo, J.: On the computational measurement of intelligence factors. In: Meystel, A. (ed.) Performance metrics for intelligent systems workshop, pp. 1–8. National Institute of Standards and Technology, Gaithersburg, MD, U.S.A (2000)Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)Hernández-Orallo, J., Minaya-Collado, N.: A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In: Proc. Intl Symposium of Engineering of Intelligent Systems (EIS 1998), pp. 146–163. ICSC Press (1998)Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4), 391–444 (2007)Lewis, D.K., Shelby-Richardson, J.: Scriven on human unpredictability. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition 17(5), 69–74 (1966)Oppy, G., Dowe, D.L.: The Turing Test. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy, Stanford University, Stanford (2011), http://plato.stanford.edu/entries/turing-test/Salomon, D., Motta, G., Bryant, D.C.O.N.: Handbook of data compression. Springer-Verlag New York Inc., Heidelberg (2009)Sanghi, P., Dowe, D.L.: A computer program capable of passing I.Q. tests. In: 4th International Conference on Cognitive Science (and 7th Australasian Society for Cognitive Science Conference), vol. 2, pp. 570–575. Univ. of NSW, Sydney, Australia (July 2003)Sayood, K.: Introduction to data compression. Morgan Kaufmann, San Francisco (2006)Scriven, M.: An essential unpredictability in human behavior. In: Wolman, B.B., Nagel, E. (eds.) Scientific Psychology: Principles and Approaches, pp. 411–425. Basic Books (Perseus Books), New York (1965)Searle, J.R.: Minds, brains and programs. Behavioural and Brain Sciences 3, 417–457 (1980)Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and control 7(1), 1–22 (1964)Sutton, R.S.: Generalization in reinforcement learning: Successful examples using sparse coarse coding. Advances in neural information processing systems, 1038–1044 (1996)Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. The MIT Press, Cambridge (1998)Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)Veness, J., Ng, K.S., Hutter, M., Silver, D.: A Monte Carlo AIXI Approximation. Journal of Artificial Intelligence Research, JAIR 40, 95–142 (2011)Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Springer, Heidelberg (2005)Wallace, C.S., Boulton, D.M.: An information measure for classification. Computer Journal 11(2), 185–194 (1968)Wallace, C.S., Dowe, D.L.: Intrinsic classification by MML - the Snob program. In: Proc. 7th Australian Joint Conf. on Artificial Intelligence, pp. 37–44. World Scientific, Singapore (November 1994)Wallace, C.S., Dowe, D.L.: Minimum message length and Kolmogorov complexity. Computer Journal 42(4), 270–283 (1999); Special issue on Kolmogorov complexityWallace, C.S., Dowe, D.L.: MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions. Statistics and Computing 10, 73–83 (2000

    Analysis of Dislocation Mechanism for Melting of Elements

    Full text link
    The melting of elemental solids is modelled as a dislocation-mediated transition on a lattice. Statistical mechanics of linear defects is used to obtain a new relation between melting temperature, crystal structure, atomic volume, and shear modulus that is accurate to 17% for at least half of the Periodic Table.Comment: 8 pages, LaTeX, to appear in Solid State Com

    A Mouse with a Loss-of-function Mutation in the c-Cbl TKB Domain Shows Perturbed Thymocyte Signaling without Enhancing the Activity of the ZAP-70 Tyrosine Kinase

    Get PDF
    The unique tyrosine kinase binding (TKB) domain of Cbl targets phosphorylated tyrosines on activated protein tyrosine kinases (PTKs); this targeting is considered essential for Cbl proteins to negatively regulate PTKs. Here, a loss-of-function mutation (G304E) in the c-Cbl TKB domain, first identified in Caenorhabditis elegans, was introduced into a mouse and its effects in thymocytes and T cells were studied. In marked contrast to the c-Cbl knockout mouse, we found no evidence of enhanced activity of the ZAP-70 PTK in thymocytes from the TKB domain mutant mouse. This finding contradicts the accepted mechanism of c-Cbl–mediated negative regulation, which requires TKB domain targeting of phosphotyrosine 292 in ZAP-70. However, the TKB domain mutant mouse does show aspects of enhanced signaling that parallel those of the c-Cbl knockout mouse, but these involve the constitutive activation of Rac and not enhanced PTK activity. Furthermore, the enhanced signaling in CD4+CD8+ double positive thymocytes appears to be compensated by the selective down-regulation of CD3 on mature thymocytes and peripheral T cells from both strains of mutant c-Cbl mice

    On the inner Double-Resonance Raman scattering process in bilayer graphene

    Full text link
    The dispersion of phonons and the electronic structure of graphene systems can be obtained experimentally from the double-resonance (DR) Raman features by varying the excitation laser energy. In a previous resonance Raman investigation of graphene, the electronic structure was analyzed in the framework of the Slonczewski-Weiss-McClure (SWM) model, considering the outer DR process. In this work we analyze the data considering the inner DR process, and obtain SWM parameters that are in better agreement with those obtained from other experimental techniques. This result possibly shows that there is still a fundamental open question concerning the double resonance process in graphene systems.Comment: 5 pages, 3 figure

    Functionalising carbon nanotubes

    Get PDF

    Lattice Dynamics and the High Pressure Equation of State of Au

    Full text link
    Elastic constants and zone-boundary phonon frequencies of gold are calculated by total energy electronic structure methods to twofold compression. A generalized force constant model is used to interpolate throughout the Brillouin zone and evaluate moments of the phonon distribution. The moments are used to calculate the volume dependence of the Gruneisen parameter in the fcc solid. Using these results with ultrasonic and shock data, we formulate the complete free energy for solid Au. This free energy is given as a set of closed form expressions, which are valid to compressions of at least V/V_0 = 0.65 and temperatures up to melting. Beyond this density, the Hugoniot enters the solid-liquid mixed phase region. Effects of shock melting on the Hugoniot are discussed within an approximate model. We compare with proposed standards for the equation of state to pressures of ~200 GPa. Our result for the room temperature isotherm is in very good agreement with an earlier standard of Heinz and Jeanloz.Comment: 13 pages, 8 figures. Accepted by Phys. Rev.

    Detailed electronic structure studies on superconducting MgB2_2 and related compounds

    Full text link
    In order to understand the unexpected superconducting behavior of MgB2_2 compound we have made electronic structure calculations for MgB2_2 and closely related systems. Our calculated Debye temperature from the elastic properties indicate that the average phonon frequency is very large in MgB2_2 compared with other superconducting intermetallics and the exceptionally high TcT_c in this material can be explained through BCS mechanism only if phonon softening occurs or the phonon modes are highly anisotropic. We identified a doubly-degenerate quasi-two dimensional key-energy band in the vicinity of EFE_{F} along Γ\Gamma-A direction of BZ which play an important role in deciding the superconducting behavior of this material. Based on this result, we have searched for similar kinds of electronic feature in a series of isoelectronic compounds such as BeB2_2, CaB2_2, SrB2_2, LiBC and MgB2_2C2_2 and found that MgB2_2C2_2 is one potential material from the superconductivity point of view. There are contradictory experimental results regarding the anisotropy in the elastic properties of MgB2_2 ranging from isotropic, moderately anisotropic to highly anisotropic. In order to settle this issue we have calculated the single crystal elastic constants for MgB2_2 by the accurate full-potential method and derived the directional dependent linear compressibility, Young's modulus, shear modulus and relevant elastic properties. We have observed large anisotropy in the elastic properties. Our calculated polarized optical dielectric tensor shows highly anisotropic behavior even though it possesses isotropic transport property. MgB2_2 possesses a mixed bonding character and this has been verified from density of states, charge density and crystal orbital Hamiltonian population analyses

    Critical exponents and equation of state of the three-dimensional Heisenberg universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional Heisenberg universality class. We find gamma=1.3960(9), nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with suppressed leading scaling corrections. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods and high-temperature expansions. The critical exponents are computed from high-temperature expansions specialized to the phi^4 improved model. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine a number of universal amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.
    • …
    corecore