178 research outputs found
De Toro, Alfonso; Ceballos, René (eds.) (2014).Frida Kahlo ‘revisitada’: Estrategias transmediales- transculturales - transpicturales. Hildesheim; Zürich; New York: Georg Olms Verlag, pp. 193
Iron is an essential element, since it is a component of many macromolecules involved in diverse physiological and cellular functions, including oxygen transport, cellular growth, and metabolism. Systemic iron homeostasis is predominantly regulated by the liver through the iron regulatory hormone hepcidin. Hepcidin expression is itself regulated by a number of proteins, including transferrin receptor 2 (TFR2). TFR2 has been shown to be expressed in the liver, bone marrow, macrophages, and peripheral blood mononuclear cells. Studies from our laboratory have shown that mice with a hepatocyte-specific deletion of Tfr2 recapitulate the hemochromatosis phenotype of the global Tfr2 knockout mice, suggesting that the hepatic expression of TFR2 is important in systemic iron homeostasis. It is unclear how TFR2 in macrophages contributes to the regulation of iron metabolism. We examined the role of TFR2 in macrophages by analysis of transgenic mice lacking Tfr2 in macrophages by crossing Tfr2f/f mice with LysMCre mice. Mice were fed an iron-rich diet or injected with lipopolysaccharide to examine the role of macrophage Tfr2 in iron- or inflammation-mediated regulation of hepcidin. Body iron homeostasis was unaffected in the knockout mice, suggesting that macrophage TFR2 is not required for the regulation of systemic iron metabolism. However, peritoneal macrophages of knockout mice had significantly lower levels of ferroportin mRNA and protein, suggesting that TFR2 may be involved in regulating ferroportin levels in macrophages. These studies further elucidate the role of TFR2 in the regulation of iron homeostasis and its role in regulation of ferroportin and thus macrophage iron homeostasis. © 2016 the American Physiological Society
Recommended from our members
X-ray analysis of samples from LH84-2
Each of these samples was analyzed using automated, scanning x-ray diffractometry. The blue vanadium surface was run in the as-received condition, while a new method of sample preparation was used for the scale. This new method involved (1) grinding the sample in a conventional fashion, (2) mixing the sample with collodion to form a castable slurry, (3) pouring and spreading the mixture on a taut, clean sheet of plastic film, and (4) then covering the resultant sample with a second plastic film layer to form a sandwich-type assembly. Only a few milligrams of sample are needed for this procedure, and the resultant data is much more accurate than that obtained by the previously-used Debye-Scherrer technique. The phase analysis for this sample finds vanadium as the major constituent and minor constituents of V{sub 2}C and a surface contaminant, PuO{sub 2}
First evidence of cryptotephra in palaeoenvironmental records associated with Norse occupation sites in Greenland
The Norse/Viking occupation of Greenland is part of a dispersal of communities across the North Atlantic coincident with the supposed Medieval Warm Period of the late 1st millennium AD. The abandonment of the Greenland settlements has been linked to climatic deterioration in the Little Ice Age as well as other possible explanations. There are significant dating uncertainties over the time of European abandonment of Greenland and the potential influence of climatic deterioration. Dating issues largely revolve around radiocarbon chronologies for Norse settlements and associated mire sequences close to settlement sites. Here we show the potential for moving this situation forward by a combination of palynological, radiocarbon and cryptotephra analyses of environmental records close to three ‘iconic’ Norse sites in the former Eastern Settlement of Greenland – Herjolfsnes, Hvalsey and Garðar (the modern Igaliku). While much work remains to be undertaken, our results show that palynological evidence can provide a useful marker for both the onset and end of Norse occupation in the region, while the radiocarbon chronologies for these sequences remain difficult. Significantly, we here demonstrate the potential for cryptotephra to become a useful tool in resolving the chronology of Norse occupation, when coupled with palynology. For the first time, we show that cryptotephra are present within palaeoenvironmental sequences located within or close to Norse settlement ruin-groups, with tephra horizons detected at all three sites. While shard concentrations were small at Herjolfsnes, concentrations sufficient for geochemical analyses were detected at Igaliku and Hvalsey. WDS-EPMA analyses of these tephra indicate that, unlike the predominantly Icelandic tephra sources reported in the Greenland ice core records, the tephra associated with the Norse sites correlate more closely with volcanic centres in the Aleutians and Cascades. Recent investigations of cryptotephra dispersal from North American centres, along with our new findings, point to the potential for cryptotephra to facilitate hypothesis testing, providing a key chronological tool for refining the timing of Norse activities in Greenland (e.g. abandonment) and of environmental contexts and drivers (e.g. climate forcing)
GLAST Large Area Telescope Multiwavelength Planning
Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-spectrum blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch
Towards a population of HMXB/NS microquasars as counterparts of low-latitude unidentified EGRET sources
The discovery of the microquasar LS 5039 well within the 95% conficence
contour of the Unidentified EGRET Source (UES) 3EG J1824-1514 was a major step
towards the possible association between microquasars (MQs) and UESs. The
recent discovery of precessing relativistic radio jets in LS I +61 303, a
source associated for long time with 2CG 135+01 and with the UES 3EG
J0241+6103, has given further support to this idea. Finally, the very recently
proposed association between the microquasar candidate AX J1639.0-4642 and the
UES 3EG J1639-4702 points towards a population of High Mass X-ray Binary
(HMXB)/Neutron Star (NS) microquasars as counterparts of low-latitude
unidentified EGRET sources.Comment: 12 pages, 7 figures. Proceedings of the Conference "The
Multiwavelength Approach to Unidentified Gamma-ray Sources", to appear in the
journal Astrophysics and Space Scienc
The Functional Renormalization Group and O(4) scaling
The critical behavior of the chiral quark-meson model is studied within the
Functional Renormalization Group (FRG). We derive the flow equation for the
scale dependent thermodynamic potential at finite temperature and density in
the presence of a symmetry-breaking external field. Within this scheme, the
critical scaling behavior of the order parameter, its transverse and
longitudinal susceptibilities as well as the correlation lengths near the
chiral phase transition are computed. We focus on the scaling properties of
these observables at non-vanishing external field when approaching the critical
point from the symmetric as well as from the broken phase. We confront our
numerical results with the Widom-Griffiths form of the magnetic equation of
state, obtained by a systematic epsilon-expansion of the scaling function. Our
results for the critical exponents are consistent with those recently computed
within Lattice Monte-Carlo studies of the O(4) spin system.Comment: 14 pages, 11 figure
Meditation-induced bliss viewed as release from conditioned neural (thought) patterns that block reward signals in the brain pleasure center
The nucleus accumbens orchestrates processes related to reward and pleasure,
including the addictive consequences of repeated reward (e.g., drug addiction and
compulsive gambling) and the accompanying feelings of craving and anhedonia.
The neurotransmitters dopamine and endogenous opiates play interactive roles in
these processes. They are released by natural rewards (i.e., food, water, sex, money,
play, etc.) and are released or mimicked by drugs of abuse. Repeated drug use
induces conditioned down-regulation of these neurotransmitters, thus causing
painful suppression of everyday pleasure. As with many spiritual traditions,
Buddhism provides strong advice against the pursuit of worldly pleasures to
attain the ‘‘good life.’’ In contrast, many forms of meditation give rise to an
immense and abiding joy. Most of these practices involve ‘‘stilling the mind,’’
whereby all content-laden thought (e.g., fantasies, daydreams, plans) ceases, and
the mind enters a state of openness, formlessness, clarity, and bliss. This can be
explained by the Buddhist suggestion that almost all of our everyday thoughts are
a form of addiction. It follows that if we turn off this internal ‘‘gossip of ego,’’ we
will find relief from the biochemical dopamine/opiate down-regulation, which is,
perhaps, the perpetual concomitant of our daily rumination
Molecular and Historical Aspects of Corn Belt Dent Diversity
Tens-of-thousands of open-pollinated cultivars of corn (Zea mays L.) are being maintained in germplasm banks. Knowledge of the amount and distribution of genetic variation within and among accessions can aid end users in choosing among them. We estimated molecular genetic variation and looked for influences of pedigree, adaptation, and migration in the genetic makeup of conserved Corn-Belt Dent-related germplasm. Plants sampled from 57 accessions representing Corn-Belt Dents, Northern Flints, Southern Dents, plus 12 public inbreds, were genotyped at 20 simple sequence repeat (SSR) loci. For 47 of the accessions, between 5 and 23 plants per accession were genotyped (mean = 9.3). Mean number of alleles per locus was 6.5 overall, 3.17 within accessions, and 3.20 within pooled inbreds. Mean gene diversity was 0.53 within accessions and 0.61 within pooled inbreds. Open-pollinated accessions showed a tendency toward inbreeding (FIS = 0.09), and 85% of genetic variation was shared among them. A Fitch-Margoliash tree strongly supported the distinctiveness of flint from dent germplasm but did not otherwise reveal evidence of genetic structure. Mantel tests revealed significant correlations between genetic distance and geographical (r = 0.54, P= 0.04) or maturity zone (r = 0.33, P = 0.03) distance only if flint germplasm was included in the analyses. A significant correlation (r = 0.76, P \u3c 0.01) was found between days to pollen shed and maturity zone of accession origin. Pedigree, rather than migration or selection, has most influenced the genetic structure of the extant representatives of the open-pollinated cultivars at these SSR loci
The Multiwavelength Approach to Unidentified Gamma-Ray Sources
As the highest-energy photons, gamma rays have an inherent interest to
astrophysicists and particle physicists studying high-energy, nonthermal
processes. Gamma-ray telescopes complement those at other wavelengths,
especially radio, optical, and X-ray, providing the broad, mutiwavelength
coverage that has become such a powerful aspect of modern astrophysics.
Multiwavelength techniques of various types have been developed to help
identify and explore unidentified gamma-ray sources. This overview summarizes
the ideas behind several of these methods.Comment: Proceedings of the Conference "The Multiwavelength Approach to
Unidentified Sources", to appear in the journal Astrophysics and Space
Scienc
- …