18,890 research outputs found
Duties of Members, Directors, and Managers of Cooperative Associations
Exact date of bulletin unknown.PDF pages: 1
Insight into the Carboxyl Transferase Domain Mechanism of Pyruvate Carboxylase from \u3cem\u3eRhizobium etli\u3c/em\u3e
The effects of mutations in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate, and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain but surprisingly showed 7- and 3.5-fold increases in activity, as compared to that of the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A-catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and removal of a proton from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO2 to form oxaloacetate and complete the reaction
A 128K-bit CCD buffer memory system
A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications
Slow carbon and nutrient accumulation in trees established following fire exclusion in the southwestern United States.
Increasing tree density that followed fire exclusion after the 1880s in the southwestern United States may have also altered nutrient cycles and led to a carbon (C) sink that constitutes a significant component of the U.S. C budget. Yet, empirical data quantifying century-scale changes in C or nutrients due to fire exclusion are rare. We used tree-ring reconstructions of stand structure from five ponderosa pine-dominated sites from across northern Arizona to compare live tree C, nitrogen (N), and phosphorus (P) storage between the 1880s and 1990s. Live tree biomass in the 1990s contained up to three times more C, N, and P than in 1880s. However, the increase in C storage was smaller than values used in recent U.S. C budgets. Furthermore, trees that had established prior to the 1880s accounted for a large fraction (28-66%) of the C, N, and P stored in contemporary stands. Overall, our century-scale analysis revealed that forests of the 1880s were on a trajectory to accumulate C and nutrients in trees even in the absence of fire exclusion, either because growing conditions became more favorable after the 1880s or because forests in the 1880s included age or size cohorts poised for accelerated growth. These results may lead to a reduction in the C sink attributed to fire exclusion, and they refine our understanding of reference conditions for restoration management of fire-prone forests
Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb
We calculate the adiabatic contributions to the free energy due to the
electron--phonon interaction at intermediate temperatures, for the elemental metals Na, K, Al, and Pb. Using our
previously published results for the nonadiabatic contributions we show that
the adiabatic contribution, which is proportional to at low
temperatures and goes as at high temperatures, dominates the
nonadiabatic contribution for temperatures above a cross--over temperature,
, which is between 0.5 and 0.8 , where is the melting
temperature of the metal. The nonadiabatic contribution falls as for
temperatures roughly above the average phonon frequency.Comment: Updated versio
Analysing Magnetism Using Scanning SQUID Microscopy
Scanning superconducting quantum interference device microscopy (SSM) is a
scanning probe technique that images local magnetic flux, which allows for
mapping of magnetic fields with high field and spatial accuracy. Many studies
involving SSM have been published in the last decades, using SSM to make
qualitative statements about magnetism. However, quantitative analysis using
SSM has received less attention. In this work, we discuss several aspects of
interpreting SSM images and methods to improve quantitative analysis. First, we
analyse the spatial resolution and how it depends on several factors. Second,
we discuss the analysis of SSM scans and the information obtained from the SSM
data. Using simulations, we show how signals evolve as a function of changing
scan height, SQUID loop size, magnetization strength and orientation. We also
investigated 2-dimensional autocorrelation analysis to extract information
about the size, shape and symmetry of magnetic features. Finally, we provide an
outlook on possible future applications and improvements.Comment: 16 pages, 10 figure
Probing the Catalytic Roles of Arg548 and Gln552 in the Carboxyl Transferase Domain of the \u3cem\u3eRhizobium etli\u3c/em\u3e Pyruvate Carboxylase by Site-directed Mutagenesis
The roles of Arg548 and Gln552 residues in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase were investigated using site-directed mutagenesis. Mutation of Arg548 to alanine or glutamine resulted in the destabilization of the quaternary structure of the enzyme, suggesting that this residue has a structural role. Mutations R548K, Q552N, and Q552A resulted in a loss of the ability to catalyze pyruvate carboxylation, biotin-dependent decarboxylation of oxaloacetate, and the exchange of protons between pyruvate and water. These mutants retained the ability to catalyze reactions that occur at the active site of the biotin carboxylase domain, i.e., bicarbonate-dependent ATP cleavage and ADP phosphorylation by carbamoyl phosphate. The effects of oxamate on the catalysis in the biotin carboxylase domain by the R548K and Q552N mutants were similar to those on the catalysis of reactions by the wild-type enzyme. However, the presence of oxamate had no effect on the reactions catalyzed by the Q552A mutant. We propose that Arg548 and Gln552 facilitate the binding of pyruvate and the subsequent transfer of protons between pyruvate and biotin in the partial reaction catalyzed in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase
Dynamics of monatomic liquids
We present a theory of the dynamics of monatomic liquids built on two basic
ideas: (1) The potential surface of the liquid contains three classes of
intersecting nearly-harmonic valleys, one of which (the ``random'' class)
vastly outnumbers the others and all whose members have the same depth and
normal mode spectrum; and (2) the motion of particles in the liquid can be
decomposed into oscillations in a single many-body valley, and nearly
instantaneous inter-valley transitions called transits. We review the
thermodynamic data which led to the theory, and we discuss the results of
molecular dynamics (MD) simulations of sodium and Lennard-Jones argon which
support the theory in more detail. Then we apply the theory to problems in
equilibrium and nonequilibrium statistical mechanics, and we compare the
results to experimental data and MD simulations. We also discuss our work in
comparison with the QNM and INM research programs and suggest directions for
future research.Comment: 53 pages, 16 figures. Differs from published version in using
American English spelling and grammar (published version uses British
English
- …