21,569 research outputs found

    The Structure of Postwar Prices

    Get PDF

    Flexible thermal device

    Get PDF
    Fabrication of expansion joint, vibration isolator device with sufficient cross sectional area for high thermal conductivity is discussed. Device consists of multiple layers of metal foil which may be designed to meet specific applications. Thermodynamic properties of the device and illustration of construction are provided

    Observation of Single Transits in Supercooled Monatomic Liquids

    Full text link
    A transit is the motion of a system from one many-particle potential energy valley to another. We report the observation of transits in molecular dynamics (MD) calculations of supercooled liquid argon and sodium. Each transit is a correlated simultaneous shift in the equilibrium positions of a small local group of particles, as revealed in the fluctuating graphs of the particle coordinates versus time. This is the first reported direct observation of transit motion in a monatomic liquid in thermal equilibrium. We found transits involving 2 to 11 particles, having mean shift in equilibrium position on the order of 0.4 R_1 in argon and 0.25 R_1 in sodium, where R_1 is the nearest neighbor distance. The time it takes for a transit to occur is approximately one mean vibrational period, confirming that transits are fast.Comment: 19 pages, 8 figure

    The GPRIME approach to finite element modeling

    Get PDF
    GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data

    Can Everett be Interpreted Without Extravaganza?

    Full text link
    Everett's relative states interpretation of quantum mechanics has met with problems related to probability, the preferred basis, and multiplicity. The third theme, I argue, is the most important one. It has led to developments of the original approach into many-worlds, many-minds, and decoherence-based approaches. The latter especially have been advocated in recent years, in an effort to understand multiplicity without resorting to what is often perceived as extravagant constructions. Drawing from and adding to arguments of others, I show that proponents of decoherence-based approaches have not yet succeeded in making their ontology clear.Comment: Succinct analysis forthcoming in Found. Phy

    On the accuracy of the melting curves drawn from modelling a solid as an elastic medium

    Full text link
    An ongoing problem in the study of a classical many-body system is the characterization of its equilibrium behaviour by theory or numerical simulation. For purely repulsive particles, locating the melting line in the pressure-temperature plane can be especially hard if the interparticle potential has a softened core or contains some adjustable parameters. A method is hereby presented that yields reliable melting-curve topologies with negligible computational effort. It is obtained by combining the Lindemann melting criterion with a description of the solid phase as an elastic continuum. A number of examples are given in order to illustrate the scope of the method and possible shortcomings. For a two-body repulsion of Gaussian shape, the outcome of the present approach compares favourably with the more accurate but also more computationally demanding self-consistent harmonic approximation.Comment: 25 pages, 7 figure

    Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb

    Full text link
    We calculate the adiabatic contributions to the free energy due to the electron--phonon interaction at intermediate temperatures, 0kBT<ϵF0 \leqslant k_{B} T < \epsilon_{F} for the elemental metals Na, K, Al, and Pb. Using our previously published results for the nonadiabatic contributions we show that the adiabatic contribution, which is proportional to T2T^{2} at low temperatures and goes as T3T^{3} at high temperatures, dominates the nonadiabatic contribution for temperatures above a cross--over temperature, TcT_{c}, which is between 0.5 and 0.8 TmT_{m}, where TmT_{m} is the melting temperature of the metal. The nonadiabatic contribution falls as T1T^{-1} for temperatures roughly above the average phonon frequency.Comment: Updated versio

    Goldstone-type fluctuations and their implications for the amorphous solid state

    Full text link
    In sufficiently high spatial dimensions, the formation of the amorphous (i.e. random) solid state of matter, e.g., upon sufficent crosslinking of a macromolecular fluid, involves particle localization and, concommitantly, the spontaneous breakdown of the (global, continuous) symmetry of translations. Correspondingly, the state supports Goldstone-type low energy, long wave-length fluctuations, the structure and implications of which are identified and explored from the perspective of an appropriate replica field theory. In terms of this replica perspective, the lost symmetry is that of relative translations of the replicas; common translations remain as intact symmetries, reflecting the statistical homogeneity of the amorphous solid state. What emerges is a picture of the Goldstone-type fluctuations of the amorphous solid state as shear deformations of an elastic medium, along with a derivation of the shear modulus and the elastic free energy of the state. The consequences of these fluctuations -- which dominate deep inside the amorphous solid state -- for the order parameter of the amorphous solid state are ascertained and interpreted in terms of their impact on the statistical distribution of localization lengths, a central diagnostic of the the state. The correlations of these order parameter fluctuations are also determined, and are shown to contain information concerning further diagnostics of the amorphous solid state, such as spatial correlations in the statistics of the localization characteristics. Special attention is paid to the properties of the amorphous solid state in two spatial dimensions, for which it is shown that Goldstone-type fluctuations destroy particle localization, the order parameter is driven to zero, and power-law order-parameter correlations hold.Comment: 20 pages, 3 figure

    Melting of Polydisperse Hard Disks

    Full text link
    The melting of a polydisperse hard disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation unbinding mechanism, as an extension of the 2D hard disk melting problem. We find that while there is pronounced fractionation in polydispersity, the apparent density-polydispersity gap does not increase in width, contrary to 3D polydisperse hard spheres. The point where the Young's modulus is low enough for the dislocation unbinding to occur moves with the apparent melting point, but stays within the density gap, just like for the monodisperse hard disk system. Additionally, we find that throughout the accessible polydispersity range, the bound dislocation-pair concentration is high enough to affect the dislocation unbinding melting as predicted by Kosterlitz, Thouless, Halperin, Nelson and Young.Comment: 6 pages, 6 figure
    corecore