845 research outputs found

    Melanoma mimicking malignant peripheral nerve sheath tumor with spread to the cerebellopontine angle: Utility of next-generation sequencing in diagnosis

    Get PDF
    Cutaneous spindle cell malignancy is associated with a broad differential diagnosis, particularly in the absence of a known primary melanocytic lesion. We present an unusually challenging patient who presented with clinical symptoms involving cranial nerves VII and VIII and a parotid-region mass, which was S100-positive while lacking in melanocytic pigment and markers. Over a year after resection of the parotid mass, both a cutaneous primary lentigo maligna melanoma and a metastatic CP angle melanoma were diagnosed in the same patient, prompting reconsideration of the diagnosis in the original parotid-region mass. Next-generation sequencing of a panel of cancer-associated genes demonstrated 19 identical, clinically significant mutations as well as a high tumor mutation burden in both the parotid-region and CP angle tumors, indicating a metastatic relationship between the two and a melanocytic identity of the parotid-region tumor

    Correlations between quantitative fat–water magnetic resonance imaging and computed tomography in human subcutaneous white adipose tissue

    Get PDF
    Beyond estimation of depot volumes, quantitative analysis of adipose tissue properties could improve understanding of how adipose tissue correlates with metabolic risk factors. We investigated whether the fat signal fraction (FSF) derived from quantitative fat–water magnetic resonance imaging (MRI) scans at 3.0 T correlates to CT Hounsfield units (HU) of the same tissue. These measures were acquired in the subcutaneous white adipose tissue (WAT) at the umbilical level of 21 healthy adult subjects. A moderate correlation exists between MRI- and CT-derived WAT values for all subjects, R2=0.54, p\u3c0.0001, with a slope of −2.6, (95% CI [−3.3,−1.8]), indicating that a decrease of 1 HU equals a mean increase of 0.38% FSF. We demonstrate that FSF estimates obtained using quantitative fat–water MRI techniques correlate with CT HU values in subcutaneous WAT, and therefore, MRI-based FSF could be used as an alternative to CT HU for assessing metabolic risk factors

    Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging

    Get PDF
    Activated brown adipose tissue (BAT) plays an important role in thermogenesis and whole body metabolism in mammals. Positron emission tomography (PET)-computed tomography (CT) imaging has identified depots of BAT in adult humans, igniting scientific interest. The purpose of this study is to characterize both active and inactive supraclavicular BAT in adults and compare the values to those of subcutaneous white adipose tissue (WAT). We obtained [18F]fluorodeoxyglucose ([18F]FDG) PET-CT and magnetic resonance imaging (MRI) scans of 25 healthy adults. Unlike [18F]FDG PET, which can detect only active BAT, MRI is capable of detecting both active and inactive BAT. The MRI-derived fat signal fraction (FSF) of active BAT was significantly lower than that of inactive BAT (means ± SD; 60.2 ± 7.6 vs. 62.4 ± 6.8%, respectively). This change in tissue morphology was also reflected as a significant increase in Hounsfield units (HU; −69.4 ± 11.5 vs. −74.5 ± 9.7 HU, respectively). Additionally, the CT HU, MRI FSF, and MRI R2* values are significantly different between BAT and WAT, regardless of the activation status of BAT. To the best of our knowledge, this is the first study to quantify PET-CT and MRI FSF measurements and utilize a semiautomated algorithm to identify inactive and active BAT in the same adult subjects. Our findings support the use of these metrics to characterize and distinguish between BAT and WAT and lay the foundation for future MRI analysis with the hope that some day MRI-based delineation of BAT can stand on its own

    The crime drop and the security hypothesis

    Get PDF
    Major crime drops were experienced in the United States and most other industrialised countries for a decade from the early to mid-1990s. Yet there is little agreement over explanation or lessons for policy. Here it is proposed that change in the quantity and quality of security was a key driver of the crime drop. From evidence relating to vehicle theft in two countries it is concluded that electronic immobilisers and central locking were particularly effective. It is suggested that reduced car theft may have induced drops in other crime including violence. From this platform a broader security hypothesis, linked to routine activity and opportunity theory, is outlined

    The properties of extragalactic radio sources selected at 20 GHz

    Full text link
    We present some first results on the variability, polarization and general properties of radio sources selected in a blind survey at 20 GHz, the highest frequency at which a sensitive radio survey has been carried out over a large area of sky. Sources with flux densities above 100 mJy in the AT20G Pilot Survey at declination -60 to -70 were observed at up to three epochs during 2002-4, including near-simultaneous measurements at 5, 8 and 18 GHz in 2003. Of the 173 sources detected, 65% are candidate QSOs, BL Lac objects or blazars, 20% galaxies and 15% faint (b > 22 mag) optical objects or blank fields. On a 1-2 year timescale, the general level of variability at 20 GHz appears to be low. For the 108 sources with good-quality measurements in both 2003 and 2004, the median variability index at 20 GHz was 6.9% and only five sources varied by more than 30% in flux density. Most sources in our sample show low levels of linear polarization (typically 1-5%), with a median fractional polarization of 2.3% at 20 GHz. There is a trend for fainter sources to show higher fractional polarization. At least 40% of sources selected at 20GHz have strong spectral curvature over the frequency range 1-20 GHz. We use a radio `two-colour diagram' to characterize the radio spectra of our sample, and confirm that the radio-source population at 20 GHz (which is also the foreground point-source population for CMB anisotropy experiments like WMAP and Planck) cannot be reliably predicted by extrapolating the results of surveys at lower frequencies. As a result, direct selection at 20 GHz appears to be a more efficient way of identifying 90 GHz phase calibrators for ALMA than the currently-proposed technique of extrapolation from all-sky surveys at 1-5 GHz.Comment: 14-page paper plus 5-page data table. Replaced with published versio
    corecore