3,615 research outputs found

    X ray microscope/telescope test and alignment

    Get PDF
    The tasks performed by the Center for Applied Optics (CAO) in support of the Normal Incidence Multilayer X-Ray Optics Program are detailed. The Multi-Spectral Solar Telescope Array (MSSTA) was launched on a Terrier-boosted Black Brant sounding rocket from White Sands Missile Range on 13 May 1991. High resolution images of the sun in the soft x ray to extreme ultraviolet (EUV) regime were obtained with normal-incidence Cassegrain, Ritchey-Chretien, and Herschelian telescopes mounted in the sounding rocket. MSSTA represents the first use of multilayer optics to study a very broad range of x ray and EUV solar emissions. Energy-selective properties of multilayer-coated optics allow distinct groups of emission lines to be isolated in the solar corona and transition region. Features of the near and far coronal structures including magnetic loops of plasmas, coronal plumes, coronal holes, faint structures, and cool prominences are visible in these images. MSSTA successfully obtained unprecedented information regarding the structure and dynamics of the solar atmosphere in the temperature range of 10(exp 4)-10(exp 7) K. The performance of the MSSTA has demonstrated a unique combination of ultra-high spatial resolution and spectral differentiation by use of multilayer optics

    Osmotic Relations of Some Plants of the Northern Marshall Islands

    Get PDF
    Osmotic relations of several strand species were investigated by determining osmotic potentials and sodium contents of leaf samples collected in the field, by measuring the electrical conductivity of groundwaters and soil solutions, and by growing seedlings in the greenhouse in culture solutions with varying levels of added salt. Mean of the field-collected leaves ranged from - 1.9 to - 3.1 M Pascals, compared with that of seawater at - 2.7 M Pa. Sodium contents of the leaves were high, commonly being 1 to 3% of the dry weight. Groundwaters mostly ranged in electrical conductivity from 16 to 50 mmhos/cm (equal to about 0.86 to 2.7 M Pa). In culture solutions, seedlings of four shrubby species (Cordia subcordata Lam., Guettarda speciosa L., Scaevola sericea Vahl, and Tournefortia argentea L.f.) and a native variety of squash (Cucurbita pepo L.) all grew well at solution of -0.28 M Pa, but were depressed to about 50% yield at -0.42 M Pa . The woody species declined to about 10-20% yield at - 1.4 M Pa, and grew only a little at - 2.8 M Pa (a solution equal in to that of seawater)

    X ray imaging microscope for cancer research

    Get PDF
    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research

    The ultra high resolution XUV spectroheliograph: An attached payload for the Space Station Freedom

    Get PDF
    The principle goal of the ultra high resolution XUV spectroheliograph (UHRXS) is to improve the ability to identify and understand the fundamental physical processes that shape the structure and dynamics of the solar chromosphere and corona. The ability of the UHRXS imaging telescope and spectrographs to resolve fine scale structures over a broad wavelength (and hence temperature) range is critical to this mission. The scientific objectives and instrumental capabilities of the UHRXS investigation are reviewed before proceeding to a discussion of the expected performance of the UHRXS observatory

    The Multi-Spectral Solar Telescope Array (MSSTA)

    Get PDF
    In 1987, our consortium pioneered the application of normal incidence multilayer X-ray optics to solar physics by obtaining the first high resolution narrow band, "thermally differentiated" images of the corona', using the emissions of the Fe IX/Fe X complex at ((lambda)lambda) approx. 171 A to 175 A, and He II Lyman (beta) at 256 A. Subsequently, we developed a rocket borne solar observatory, the Multi Spectral Solar Telescope Array (MSSTA) that pioneered multi-thermal imaging of the solar atmosphere, using high resolution narrow band X-ray, EUV and FUV optical systems. Analysis of MSSTA observations has resulted in four significant insights into the structure of the solar atmosphere: (1) the diameter of coronal loops is essentially constant along their length; (2) models of the thermal and density structure of polar plumes based on MSSTA observations have been shown to be consistent with the thesis that they are the source of high speed solar wind streams; (3) the magnetic structure of the footpoints of polar plumes is monopolar, and their thermal structure is consistent with the thesis that the chromosphere at their footpoints is heated by conduction from above; (4) coronal bright points are small loops, typically 3,500 - 20,000 km long (5 sec - 30 sec); their footpoints are located at the poles of bipolar magnetic structures that are are distinguished from other network elements by having a brighter Lyman a signature. Loop models derived for 26 bright points are consistent with the thesis that the chromosphere at their footpoints is heated by conduction from the corona

    Wildlife-friendly farming benefits rare birds, bees and plants

    Get PDF
    Agricultural intensification is a leading cause of global biodiversity loss, especially for threatened and near-threatened species. One widely implemented response is ‘wildlife-friendly farming’, involving the close integration of conservation and extensive farming practices within agricultural landscapes. However, the putative benefits from this controversial policy are currently either unknown or thought unlikely to extend to rare and declining species. Here, we show that new, evidence-based approaches to habitat creation on intensively managed farmland in England can achieve large increases in plant, bee and bird species. In particular, we found that habitat enhancement methods designed to provide the requirements of sensitive target biota consistently increased the richness and abundance of both rare and common species, with 10-fold to greater than 100-fold more rare species per sample area than generalized conventional conservation measures. Furthermore, targeting landscapes of high species richness amplified beneficial effects on the least mobile taxa: plants and bees. Our results provide the first unequivocal support for a national wildlife-friendly farming policy and suggest that this approach should be implemented much more extensively to address global biodiversity loss. However, to be effective, these conservation measures must be evidence-based, and developed using sound knowledge of the ecological requirements of key species

    Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Get PDF
    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matche
    corecore