1,921 research outputs found

    Differential Regulation of Growth-Promoting Signalling Pathways by E-Cadherin

    Get PDF
    Background: Despite the well-documented association between loss of E-cadherin and carcinogenesis, as well as the link between restoration of its expression and suppression of proliferation in carcinoma cells, the ability of E-cadherin to modulate growth-promoting cell signalling in normal epithelial cells is less well understood and frequently contradictory. The potential for E-cadherin to co-ordinate different proliferation-associated signalling pathways has yet to be fully explored. Methodology/Principal Findings: Using a normal human urothelial (NHU) cell culture system and following a calcium-switch approach, we demonstrate that the stability of NHU cell-cell contacts differentially regulates the Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-Regulated Kinase (ERK) and Phosphatidylinositol 3-Kinase (PI3-K)/AKT pathways. We show that stable cell contacts down-modulate the EGFR/ERK pathway, whilst inducing PI3-K/AKT activity, which transiently enhances cell growth at low density. Functional inactivation of E-cadherin interferes with the capacity of NHU cells to form stable calcium-mediated contacts, attenuates E-cadherin-mediated PI3-K/AKT induction and enhances NHU cell proliferation by allowing de-repression of the EGFR/ERK pathway and constitutive activation of beta-catenin-TCF signalling. Conclusions/Significance: Our findings provide evidence that E-cadherin can differentially and concurrently regulate specific growth-related signalling pathways in a context-specific fashion, with direct, functional consequences for cell proliferation and population growth. Our observations not only reveal a novel, complex role for E-cadherin in normal epithelial cell homeostasis and tissue regeneration, but also provide the basis for a more complete understanding of the consequences of E-cadherin loss on malignant transformation

    16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice

    Get PDF
    Acknowledgements The authors acknowledge the assistance of Grietje Holtrop (RINH-BioSS) with the statistical analysis of the data and the Wellcome Trust Sanger Institute’s 454 pyrosequencing team for generating 16S rRNA gene data. AWW, PS and JP received core funding support from the Wellcome Trust [grant number 098051]. AWW, JCM, HJF and KPS are funded by the Scottish Government (SG-RESAS).Peer reviewedPublisher PD

    Programming Protocol-Independent Packet Processors

    Full text link
    P4 is a high-level language for programming protocol-independent packet processors. P4 works in conjunction with SDN control protocols like OpenFlow. In its current form, OpenFlow explicitly specifies protocol headers on which it operates. This set has grown from 12 to 41 fields in a few years, increasing the complexity of the specification while still not providing the flexibility to add new headers. In this paper we propose P4 as a strawman proposal for how OpenFlow should evolve in the future. We have three goals: (1) Reconfigurability in the field: Programmers should be able to change the way switches process packets once they are deployed. (2) Protocol independence: Switches should not be tied to any specific network protocols. (3) Target independence: Programmers should be able to describe packet-processing functionality independently of the specifics of the underlying hardware. As an example, we describe how to use P4 to configure a switch to add a new hierarchical label

    Improved measurement for mothers, newborns and children in the era of the Sustainable Development Goals.

    Get PDF
    BACKGROUND: An urgent priority in maternal, newborn and child health is to accelerate the scale-up of cost-effective essential interventions, especially during labor, the immediate postnatal period and for the treatment of serious infectious diseases and acute malnutrition.  Tracking intervention coverage is a key activity to support scale-up and in this paper we examine priorities in coverage measurement, distinguishing between essential interventions that can be measured now and those that require methodological development. METHODS: We conceptualized a typology of indicators related to intervention coverage that distinguishes access to care from receipt of an intervention by the population in need.  We then built on documented evidence on coverage measurement to determine the status of indicators for essential interventions and to identify areas for development. RESULTS: Contact indicators from pregnancy to childhood were identified as current indicators for immediate use, but indicators reflecting the quality of care provided during these contacts need development. At each contact point, some essential interventions can be measured now, but the need for development of indicators predominates around interventions at the time of birth and interventions to treat infections. Addressing this need requires improvements in routine facility based data capture, methods for linking provider and community-based data, and improved guidance for effective coverage measurement that reflects the provision of high-quality care. CONCLUSION: Coverage indicators for some essential interventions can be measured accurately through household surveys and be used to track progress in maternal, newborn and child health.  Other essential interventions currently rely on contact indicators as proxies for coverage but urgent attention is needed to identify new measurement approaches that directly and reliably measure their effective coverage

    Semi-quantitative assay to measure urease activity by urinary catheter-associated uropathogens

    Get PDF
    Catheter-associated urinary tract infections (CAUTIs) are one of the most common healthcare-associated infections in the US, accounting for over 1 million cases annually and totaling 450 million USD. CAUTIs have high morbidity and mortality rates and can be caused by a wide range of pathogens, making empiric treatment difficult. Furthermore, when urease-producing uropathogens cause symptomatic CAUTI or asymptomatic catheter colonization, the risk of catheter failure due to blockage increases. The enzyme urease promotes catheter blockage by hydrolyzing urea in urine into ammonia and carbon dioxide, which results in the formation of crystals that coat the catheter surface. If CAUTI is left untreated, the crystals can grow until they block the urinary catheter. Catheter blockage and subsequent failure reduces the quality of life for the chronically catheterized, as it requires frequent catheter exchanges and can promote more severe disease, including dissemination of the infection to the kidneys or bloodstream. Thus, understanding how urease contributes to catheter blockages and/or more severe disease among the broad range of urease-producing microbes may provide insights into better prevention or treatment strategies. However, clinical assays that detect urease production among clinical isolates are qualitative and prioritize the detection of urease fro

    Antiretroviral activity of the aminothiol WR1065 against Human Immunodeficiency virus (HIV-1) in vitro and Simian Immunodeficiency virus (SIV) ex vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WR1065 is the free-thiol metabolite of the cytoprotective aminothiol amifostine, which is used clinically at very high doses to protect patients against toxicity induced by radiation and chemotherapy. In an earlier study we briefly reported that the aminothiol WR1065 also inhibits HIV-1 replication in phytohemagglutinin (PHA)-stimulated human T-cell blasts (TCBs) infected in culture for 2 hr before WR1065 exposure. In this study we expanded the original observations to define the dose-response curve for that inhibition, and address the question of additive effects for the combination of WR1065 plus Zidovudine (AZT). Here we also explored the effect of WR1065 on SIV by examining TCBs taken from macaques with well-established infections several months with SIV.</p> <p>Results</p> <p>TCBs from healthy human donors were infected for 2 hr with HIV-1, and viral replication (p24) was measured after 72 hr of incubation with or without WR1065, AZT, or both drugs. HIV-1 replication, in HIV-1-infected human TCBs, was inhibited by 50% at 13 μM WR1065, a dose at which 80% of the cells were viable. Cell cycle parameters were the same or equivalent at 0, 9.5 and 18.7 μM WR1065, showing no drug-related toxicity. Combination of AZT with WR1065 showed that AZT retained antiretroviral potency in the presence of WR1065. Cultured CD8<sup>+ </sup>T cell-depleted PHA-stimulated TCBs from <it>Macaca mulatta </it>monkeys chronically infected with SIV were incubated 17 days with WR1065, and viral replication (p27) and cell viability were determined. Complete inhibition (100%) of SIV replication (p27) was observed when TCBs from 3 monkeys were incubated for 17 days with 18.7 μM WR1065. A lower dose, 9.5 μM WR1065, completely inhibited SIV replication in 2 of the 3 monkeys, but cells from the third macaque, with the highest viral titer, only responded at the high WR1065 dose.</p> <p>Conclusion</p> <p>The study demonstrates that WR1065 and the parent drug amifostine, the FDA-approved drug Ethyol, have antiretroviral activity. WR1065 was active against both an acute infection of HIV-1 and a chronic infection of SIV. The data suggest that the non-toxic drug amifostine may be a useful antiretroviral agent given either alone or in combination with other drugs as adjuvant therapy.</p

    The endoribonuclease YbeY is linked to proper cellular morphology and virulence in 2 Brucella abortus

    Get PDF
    The endoribonuclease YbeY is one of the most well conserved proteins across the kingdoms of life. In the present study, we demonstrate that YbeY in Brucella abortus is linked to a variety of important activities, including proper cellular morphology, mRNA transcript levels, and virulence. Deletion of ybeY in B. abortus led to a small colony phenotype when the bacteria were grown on agar medium, as well as significant aberrations in the morphology of the bacterial cell as evidenced by electron microscopy. Additionally, compared to the parental strain, the ΔybeY strain was significantly attenuated in both macrophage and mouse models of infection. The ΔybeY strain also showed increased sensitivities to several in vitro applied stressors, including bile acid, hydrogen peroxide, SDS, and paraquat. Transcriptomic analysis revealed that a multitude of mRNA transcripts are dysregulated in the ΔybeY strain, and many of the identified mRNAs encode proteins involved in metabolism, nutrient transport, transcriptional regulation, and flagellum synthesis. We subsequently constructed gene deletion strains of the most highly dysregulated systems, and several of the YbeY-linked gene deletion strains exhibited defects in the ability of the bacteria to survive and replicate in primary murine macrophages. Altogether, these data establish a clear role for YbeY in the biology and virulence of Brucella, and moreover, this work further illuminates the highly varied roles of this widely conserved endoribonuclease in bacteria. Importance Brucella spp. are highly efficient bacterial pathogens of animals and humans, causing significant morbidity and economic loss worldwide, and relapse of disease often occurs following antibiotic treatment of human brucellosis. As such, novel therapeutic strategies to combat Brucella infections are needed. Ribonucleases in the brucellae are understudied, and these enzymes represent elements that may be potential targets for future treatment approaches. The present work demonstrates the importance of the endoribonuclease YbeY for cellular morphology, efficient control of mRNA levels, and virulence in B. abortus. Overall, this study advances our understanding of the critical roles of YbeY in the pathogenesis of the intracellular brucellae and expands our understanding of this highly conserved ribonuclease.National Institute of General Medical Sciences (U.S.) (Grant GM31030
    corecore