60,490 research outputs found
Embedded function methods for compressible high speed turbulent flow
Fundamental issues relating to compressible turbulent flow are addressed. The focus has been on developing methods and testing concepts for attached flows rather than trying to force a conventional law of the wall into a zone of backflow. Although the dynamics of the near-wall flow in an attached turbulent boundary layer are relatively well documented, the dynamical features of a zone of reversed turbulent flow are not, nor are they well understood. Incompressibility introduces effects and issues that have been dealt with only marginally in the literature, therefore, the present work has been focussed on attached high-speed flows. The wall function method has been extended up through the supersonic to hypersonic speeds. Algorithms have been successfully introduced into the code that calculates the flow all the way to the wall, and testing is being carried out for progressively more complex flow situations
Wall-layer eruptions in turbulent flows
The near-wall region of a turbulent flow is investigated in the limit of large Reynolds numbers. When low-speed streaks are present, the governing equations are shown to be of the boundary-layer type. Physical processes leading to local breakdown and a strong interaction with the outer region are considered. It is argued that convected vortices, predominantly of the hairpin type, will provoke eruptions and regenerative interactions with the outer region
Pore geometry as a control on rock strength
This study was funded via RJW's University of Leicester start-up fund, as part of AAB's PhD project. We thank Don Swanson and Mike Poland at HVO, Hawai'i, for their help and advice during fieldwork planning and sample collection in the Koa'e fault system, and the National Park Service for granting a research permit to collect rock samples. Sergio Vinciguerra is thanked for access to the Rock Mechanics and Physics lab at the British Geological Survey and Audrey Ougier-Simonin is thanked for her help preparing samples and advice during testing. We thank Mike Heap (EOST Strasbourg) and an anonymous reviewer for their detailed and careful comments that greatly improved the manuscript.Peer reviewedPostprin
Evolution of hairpin vortices in a shear flow
Recent experimental studies suggest that the hairpin vortex plays an important (and perhaps dominant) role in the dynamics of turbulent flows near walls. In this study a numerical procedure is developed to allow the accurate computation of the trajectory of a 3-D vortex having a small core radius. For hairpin vortices which are convected in a shear flow above a wall, the calculated results show that a 2-D vortex containing a small 3-D disturbance distorts into a complex shape with subsidiary hairpin vortices forming outboard of the original hairpin vortex. As the vortex moves above the wall, it induces unsteady motion in the viscous flow near the wall: numerical solutions suggest that the boundary-layer flow near the wall will ultimately erupt in response to the motion of the hairpin vortex and in the process a secondary hairpin vortex will be created. The computer results agree with recent experimental investigations
Computer Program for Assessing the Economic Feasibility of Solar Energy for Single Family Residences and Light Commercial Applications
Computer program, SHCOST, was used to perform economic analyses of operational test sites. The program allows consideration of the economic parameters which are important to the solar system user. A life cycle cost and cash flow comparison is made between a solar heating system and a conventional system. The program assists in sizing the solar heating system. A sensitivity study and plot capability allow the user to select the most cost effective system configuration
Quantum corrections to the Larmor radiation formula in scalar electrodynamics
We use the semi-classical approximation in perturbative scalar quantum
electrodynamics to calculate the quantum correction to the Larmor radiation
formula to first order in Planck's constant in the non-relativistic
approximation, choosing the initial state of the charged particle to be a
momentum eigenstate. We calculate this correction in two cases: in the first
case the charged particle is accelerated by a time-dependent but
space-independent vector potential whereas in the second case it is accelerated
by a time-independent vector potential which is a function of one spatial
coordinate. We find that the corrections in these two cases are different even
for a charged particle with the same classical motion. The correction in each
case turns out to be non-local in time in contrast to the classical
approximation.Comment: 19 page
Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications
The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications
Investigation of the free flow electrophoretic process
The effects of gravity on the free flow electrophoretic process was demonstrated. The free flow electrophoresis chamber used to demonstrate the effects of gravity on the process was of a proprietary design. This chamber was 120 cm long, 16 cm wide, and 0.15 cm thick. Flow in this chamber was in the upward direction and exited through 197 outlets at the top of the chamber. During electrophoresis a stream of sample was injected into the flow near the bottom of the chamber and an electrical field was applied across the width of the chamber. The field caused a lateral force on particles in the sample proportional to the inherent change of the particle and the electric field strength. Particle lateral velocity was then dependent on the force due to viscous drag which was proportional to particle size and particle shape dependent
Prelaunch absolute radiometric calibration of the reflective bands on the LANDSAT-4 protoflight Thematic Mapper
The results of the absolute radiometric calibration of the LANDSAT 4 thematic mapper, as determined during pre-launch tests with a 122 cm integrating sphere, are presented. Detailed results for the best calibration of the protoflight TM are given, as well as summaries of other tests performed on the sensor. The dynamic range of the TM is within a few per cent of that required in all bands, except bands 1 and 3. Three detectors failed to pass the minimum SNR specified for their respective bands: band 5, channel 3 (dead), band 2, and channels 2 and 4 (noisy or slow response). Estimates of the absolute calibration accuracy for the TM show that the detectors are typically calibrated to 5% absolute error for the reflective bands; 10% full-scale accuracy was specified. Ten tests performed to transfer the detector absolute calibration to the internal calibrator show a 5% range at full scale in the transfer calibration; however, in two cases band 5 showed a 10% and a 7% difference
Prelaunch absolute radiometric calibration of LANDSAT-4 protoflight Thematic Mapper
Results are summarized and analyzed from several prelaunch tests with a 122 cm integrating sphere used as part of the absolute radiometric calibration experiments for the protoflight TM sensor carried on the LANDSAT-4 satellite. The calibration procedure is presented and the radiometric sensitivity of the TM is assessed. The internal calibrator and dynamic range after calibration are considered. Tables show dynamic range after ground processing, spectral radiance to digital number and digital number to spectral radiance values for TM bands 1, 2, 3, 4, 5, 7 and for channel 4 of band 6
- …