2,059 research outputs found

    A Virial Core in the Sculptor Dwarf Spheroidal Galaxy

    Full text link
    The projected virial theorem is applied to the case of multiple stellar populations in the nearby dwarf spheroidal galaxies. As each population must reside in the same gravitational potential, this provides strong constraints on the nature of the dark matter halo. We derive necessary conditions for two populations with Plummer or exponential surface brightnesses to reside in a cusped Navarro-Frenk-White (NFW) halo. We apply our methods to the Sculptor dwarf spheroidal, and show that there is no NFW halo compatible with the energetics of the two populations. The dark halo must possess a core radius of ~ 120 pc for the virial solutions for the two populations to be consistent. This conclusion remains true, even if the effects of flattening or self-gravity of the stellar populations are included.Comment: 4 pages, 2 figures, ApJL, submitte

    Clean Kinematic Samples in Dwarf Spheroidals: An Algorithm for Evaluating Membership and Estimating Distribution Parameters When Contamination is Present

    Full text link
    (abridged) We develop an algorithm for estimating parameters of a distribution sampled with contamination, employing a statistical technique known as ``expectation maximization'' (EM). Given models for both member and contaminant populations, the EM algorithm iteratively evaluates the membership probability of each discrete data point, then uses those probabilities to update parameter estimates for member and contaminant distributions. The EM approach has wide applicability to the analysis of astronomical data. Here we tailor an EM algorithm to operate on spectroscopic samples obtained with the Michigan-MIKE Fiber System (MMFS) as part of our Magellan survey of stellar radial velocities in nearby dwarf spheroidal (dSph) galaxies. These samples are presented in a companion paper and contain discrete measurements of line-of-sight velocity, projected position, and Mg index for ~1000 - 2500 stars per dSph, including some fraction of contamination by foreground Milky Way stars. The EM algorithm quantifies both dSph and contaminant distributions, returning maximum-likelihood estimates of the means and variances, as well as the probability that each star is a dSph member. Applied to our MMFS data, the EM algorithm identifies more than 5000 probable dSph members. We test the performance of the EM algorithm on simulated data sets that represent a range of sample size, level of contamination, and amount of overlap between dSph and contaminant velocity distributions. The simulations establish that for samples ranging from large (N ~3000) to small (N~30), the EM algorithm distinguishes members from contaminants and returns accurate parameter estimates much more reliably than conventional methods of contaminant removal (e.g., sigma clipping).Comment: Accepted for publication in The Astronomical Journal. Download pdf with full-resolution figures from http://www.ast.cam.ac.uk/~walker/dsph_em.pd

    Unambiguous quasar microlensing

    Get PDF
    Microlensing studies of quasars can reveal dark matter lumps over a broad mass spectrum; we highlight the importance of monitoring quasars which are seen through the halos of low-redshift galaxies. For these configurations microlensing by planetary-mass objects will manifest itself as isolated events which are only weakly chromatic. Statistical comparison of the observed optical depths with their theoretical counterparts provides a strong test for a microlensing origin of such events. If microlensing is detected, the light-curves can reveal not only the characteristic microlens masses, and their corresponding contribution to dark halos, but also how compact the individual objects are. In this way we can decisively test the possibility that the dark matter associated with galaxies is composed principally of planetary-mass gas clouds.Comment: Revised version; 5 pages, 4 figures, to appear in MNRA

    Probing non-spherical dark halos in the Galactic dwarf galaxies

    Full text link
    We construct axisymmetric mass models for dwarf spheroidal (dSph) galaxies in the Milky Way to obtain plausible limits on the non-spherical structure of their dark halos. This is motivated by the fact that the observed luminous parts of the dSphs are actually non-spherical and Cold Dark Matter (CDM) models predict non-spherical virialized dark halos. Our models consider velocity anisotropy of stars vR2ˉ/vϕ2ˉ\bar{v^2_R} / \bar{v^2_{\phi}}, which can vary with the adopted cylindrical coordinates under the assumption vz2ˉ=vR2ˉ\bar{v^2_z}=\bar{v^2_R} for simplicity, and also include an inclination of the system as a fitting parameter to explain the observed line-of-sight velocity dispersion profile. Applying these models to six of the bright dSphs in the Milky Way, we find that the best-fitting cases for most of the dSphs yield oblate and flattened dark halos, irrespective of assumed density profiles in their central parts. We also find that the total mass of the dSphs enclosed within a spheroid with major-axis length of 300 pc varies from 106M⊙10^6M_{\odot} to 107M⊙10^7M_{\odot}, contrary to the conclusion from spherical models. This suggests the importance of considering shapes of dark halos in mass models of the dSphs. It is also found that dark halos of the Galactic dSphs may be more flattened than N-body predictions, thereby implying our yet incomplete understanding of baryonic and/or non-baryonic dark matter physics in dwarf galaxy scales.Comment: 13 pages, 9 figures, Accepted for publication in Ap

    Study of the Sextans dwarf spheroidal galaxy from the DART CaII triplet survey

    Get PDF
    We use VLT/FLAMES intermediate resolution (R~6500) spectra of individual red giant branch stars in the near-infrared CaII triplet (CaT) region to investigate the wide-area metallicity properties and internal kinematics of the Sextans dwarf spheroidal galaxy (dSph). Our final sample consists of 174 probable members of Sextans with accurate line-of-sight velocities (+- 2 km/s) and CaT [Fe/H] measurements (+- 0.2 dex). We use the MgI line at 8806.8 \AA\, as an empirical discriminator for distinguishing between probable members of the dSph (giant stars) and probable Galactic contaminants (dwarf stars). Sextans shows a similar chemo-dynamical behaviour to other Milky Way dSphs, with its central regions being more metal rich than the outer parts and with the more metal-rich stars displaying colder kinematics than the more metal-poor stars. Hints of a velocity gradient are found along the projected major axis and along an axis at P.A.=191 deg, however a larger and more spatially extended sample may be necessary to pin down the amplitude and direction of this gradient. We detect a cold kinematic substructure at the centre of Sextans, consistent with being the remnant of a disrupted very metal poor stellar cluster. We derive the most extended line-of-sight velocity dispersion profile for Sextans, out to a projected radius of 1.6 deg. From Jeans modelling of the observed line-of-sight velocity dispersion profile we find that this is consistent with both a cored dark matter halo with large core radius and cuspy halo with low concentration. The mass within the last measured point is in the range 2-4 x 10^8 M_sun, giving very large mass-to-light ratios, from 460 to 920 (M/L)_(V,sun).Comment: 30 pages, 17 figures; 4 tables. Accepted for publication in MNRAS. Table 4 will appear as online material in the published version of the manuscript. Typo correcte

    The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo I: A Tidal Hit and Run?

    Full text link
    (abridged) We present kinematic results for a sample of 387 stars located near Leo I based on spectra obtained with the MMT's Hectochelle spectrograph near the MgI/Mgb lines. We estimate the mean velocity error of our sample to be 2.4 km/s, with a systematic error of < 1 km/s. We produce a final sample of 328 Leo I red giant members, from which we measure a mean heliocentric radial velocity of 282.9 +/- 0.5 km/s, and a mean radial velocity dispersion of 9.2 +/- 0.4 km/s for Leo I. The dispersion profile of Leo I is flat out to beyond its classical `tidal' radius. We fit the profile to a variety of equilibrium dynamical models and can strongly rule out models where mass follows light. Two-component Sersic+NFW models with tangentially anisotropic velocity distributions fit the dispersion profile well, with isotropic models ruled out at a 95% confidence level. The mass and V-band mass-to-light ratio of Leo I estimated from equilibrium models are in the ranges 5-7 x 10^7 M_sun and 9-14 (solar units), respectively, out to 1 kpc from the galaxy center. Leo I members located outside a `break radius' (about 400 arcsec = 500 pc) exhibit significant velocity anisotropy, whereas stars interior appear to have isotropic kinematics. We propose the break radius represents the location of the tidal radius of Leo I at perigalacticon of a highly elliptical orbit. Our scenario can account for the complex star formation history of Leo I, the presence of population segregation within the galaxy, and Leo I's large outward velocity from the Milky Way. The lack of extended tidal arms in Leo I suggests the galaxy has experienced only one perigalactic passage with the Milky Way, implying that Leo I may have been injected into its present orbit by a third body a few Gyr before perigalacticon.Comment: ApJ accepted, 23 figures, access paper as a pdf file at http://www.astro.lsa.umich.edu/~mmateo/research.htm

    Proper Motion of Milky Way Dwarf Spheroidals from Line-of-Sight Velocities

    Full text link
    Proper motions for several Milky Way dwarf spheroidal (dSph) galaxies have been determined using both ground and space-based imaging. These measurements require long baselines and repeat observations and typical errors are of order ten milli-arcseconds per century. In this paper, we utilize the effect of "perspective rotation" to show that systematic proper motion of some dSphs can be determined to a similar precision using only stellar line-of-sight velocities. We show that including the effects of small intrinsic rotation in dSphs increases the proper motion errors by about a factor of two. We provide error projections for future data sets, and show that proposed thirty meter class telescopes will measure the proper motion of a few dSphs with milli-arcsecond per century precision.Comment: 4 pages, 1 figure. Minor changes to match published versio

    On Kinematic Substructure in the Sextans Dwarf Spheroidal Galaxy

    Full text link
    We present multifiber echelle radial velocity results for 551 stars in the Sextans dwarf spheroidal galaxy and identify 294 stars as probable Sextans members. The projected velocity dispersion profile of the binned data remains flat to a maximum angular radius of 30â€Č30^{\prime}. We introduce a nonparametric technique for estimating the projected velocity dispersion surface, and use this to search for kinematic substructure. Our data do not confirm previous reports of a kinematically distinct stellar population at the Sextans center. Instead we detect a region near the Sextans core radius that is kinematically colder than the overall Sextans sample with 95% confidence.Comment: accepted for publication in ApJ Letters; 4 figures (2 color

    Leo V: A Companion of a Companion of the Milky Way Galaxy

    Get PDF
    We report the discovery of a new Milky Way dwarf spheroidal galaxy in the constellation of Leo identified in data from the Sloan Digital Sky Survey. Leo V lies at a distance of about 180 kpc, and is separated by about 3 degrees from another recent discovery, Leo IV. We present follow-up imaging from the Isaac Newton Telescope and spectroscopy from the Hectochelle fiber spectrograph at the Multiple Mirror Telescope. Leo V's heliocentric velocity is 173.4 km/s, which is offset by about 40 km/s from that of Leo IV. A simple interpretation of the kinematic data is that both objects may lie on the same stream, though the implied orbit is only modestly eccentric (e = 0.2)Comment: Submitted to ApJ (Letters
    • 

    corecore