1,477 research outputs found

    Beyond the Meta: Leveraging Game Design Parameters for Patch-Agnostic Esport Analytics

    Full text link
    Esport games comprise a sizeable fraction of the global games market, and is the fastest growing segment in games. This has given rise to the domain of esports analytics, which uses telemetry data from games to inform players, coaches, broadcasters and other stakeholders. Compared to traditional sports, esport titles change rapidly, in terms of mechanics as well as rules. Due to these frequent changes to the parameters of the game, esport analytics models can have a short life-spam, a problem which is largely ignored within the literature. This paper extracts information from game design (i.e. patch notes) and utilises clustering techniques to propose a new form of character representation. As a case study, a neural network model is trained to predict the number of kills in a Dota 2 match utilising this novel character representation technique. The performance of this model is then evaluated against two distinct baselines, including conventional techniques. Not only did the model significantly outperform the baselines in terms of accuracy (85% AUC), but the model also maintains the accuracy in two newer iterations of the game that introduced one new character and a brand new character type. These changes introduced to the design of the game would typically break conventional techniques that are commonly used within the literature. Therefore, the proposed methodology for representing characters can increase the life-spam of machine learning models as well as contribute to a higher performance when compared to traditional techniques typically employed within the literature

    Key Challenges for Land Use Planning and Its Environmental Assessments in the Abuja City-Region, Nigeria

    Get PDF
    Land use planning as strategic instruments to guide urban dynamics faces particular challenges in the Global South, including Sub-Saharan Africa, where urgent interventions are required to improve urban and environmental sustainability. This study investigated and identified key challenges of land use planning and its environmental assessments to improve the urban and environmental sustainability of city-regions. In doing so, we combined expert interviews and questionnaires with spatial analyses of urban and regional land use plans, as well as current and future urban land cover maps derived from Geographic Information Systems and remote sensing. By overlaying and contrasting land use plans and land cover maps, we investigated spatial inconsistencies between urban and regional plans and the associated urban land dynamics and used expert surveys to identify the causes of such inconsistencies. We furthermore identified and interrogated key challenges facing land use planning, including its environmental assessment procedures, and explored means for overcoming these barriers to rapid, yet environmentally sound urban growth. The results illuminated multiple inconsistencies (e.g., spatial conflicts) between urban and regional plans, most prominently stemming from conflicts in administrative boundaries and a lack of interdepartmental coordination. Key findings identified a lack of Strategic Environmental Assessment and inadequate implementation of land use plans caused by e.g., insufficient funding, lack of political will, political interference, corruption as challenges facing land use planning strategies for urban and environmental sustainability. The baseline information provided in this study is crucial to improve strategic planning and urban/environmental sustainability of city-regions in Sub-Saharan Africa and across the Global South, where land use planning faces similar challenges to address haphazard urban expansion patterns.Peer Reviewe

    Simulating Urban Land Expansion in the Context of Land Use Planning in the Abuja City-Region, Nigeria

    Get PDF
    In the Global South, including the Sub-Saharan African city-regions, the possible future urban expansion patterns may pose a challenge towards improving environmental sustainability. Land use planning strategies and instruments for regulating urban expansion are faced with challenges, including insufficient data availability to offer insights into the possible future urban expansion. This study integrated empirical data derived from Geographic Information Systems, Remote Sensing, and surveys of experts to offer insights into the possible future urban expansion under spatial planning scenarios to support land use planning and environmental sustainability of city-regions. We analyzed the spatial determinants of urban expansion, calibrated the land cover model using the Multi-Layer Perceptron Neural Network and Markov, and developed three scenarios to simulate land cover from 2017 to 2030 and to 2050. The scenarios include Business As Usual that extrapolates past trends; Regional Land Use Plan that restricts urban expansion to the land designated for urban development, and; Adjusted Urban Land that incorporates the leapfrogged settlements into the land designated for urban development. Additionally, we quantified the potential degradation of environmentally sensitive areas by future urban expansion under the three scenarios. Results indicated a high, little, and no potential degradation of environmentally sensitive areas by the future urban expansion under the Business As Usual, Adjusted Urban Land, and Regional Land Use Plan scenarios respectively. The methods and the baseline information provided, especially from the Adjusted Urban Land scenario showed the possibility of balancing the need for urban expansion and the protection of environmentally sensitive areas. This would be useful to improve the environmental sustainability of the Sub-Saharan African city-regions and across the Global South, where insufficient data availability challenges land use planning.Peer Reviewe

    Learning the Fuzzy Phases of Small Photonic Condensates

    Full text link
    Phase transitions, being the ultimate manifestation of collective behaviour, are typically features of many-particle systems only. Here, we describe the experimental observation of collective behaviour in small photonic condensates made up of only a few photons. Moreover, a wide range of both equilibrium and non-equilibrium regimes, including Bose-Einstein condensation or laser-like emission are identified. However, the small photon number and the presence of large relative fluctuations places major difficulties in identifying different phases and phase transitions. We overcome this limitation by employing unsupervised learning and fuzzy clustering algorithms to systematically construct the fuzzy phase diagram of our small photonic condensate. Our results thus demonstrate the rich and complex phase structure of even small collections of photons, making them an ideal platform to investigate equilibrium and non-equilibrium physics at the few particle level

    Physico-chemical properties of newly discovered hydrothermal plumes above the Southern Mid-Atlantic Ridge (13°-33°S)

    Get PDF
    Highlights • Hydrothermal survey in the 13°-33°S region of the Mid-Atlantic Ridge based on hydrographic casts, noble gas observations and AUV dives. • Discovery of hydrothermal plumes above ten ridge segments pointing to 14 unknown active vent sites. • Rio de Janeiro Transform (22°S) likely represents a barrier separating different vent endemic faunal communities to the north and south. Abstract The oceanic crust is initially cooled and deep-sea chemosynthetic ecosystems are largely fed by hydrothermal circulation and venting on the seafloor. Much of this venting takes place at mid-ocean ridges and in order to make realistic models of the crust's thermal budget and to understand chemosynthetic biogeography it is important to have a detailed inventory of vent sites. Until recently, a major gap in this inventory was the Mid-Atlantic Ridge south of 13°S, a key region for vent fauna biogeography as it is the corridor linking the Atlantic to the Indian and Pacific Oceans. In spring 2013 we systematically surveyed the axial region between 13°S and 33°S for hydrothermal signals in the water column, using turbidity, oxidation-reduction-potential (ORP) and noble gases as indicators. Standard conductivity-temperature-depth (CTD) rosette water-sampler deployments were complimented by a novel autonomous underwater vehicle (AUV) deployment strategy, in which the AUV made single-pass, segment-scale (up to 100 km long) dives close to the seafloor to detect small vents. The ca. 2100 km-long survey covered 16 ridge segments and we identified previously unknown hydrothermal plumes above ten segments that point to 14 new hydrothermal vent fields. The majority of plumes are located at high-relief segment centers, where magmatism is robust. A wide gap in the distribution of vents in the 19°S-23°S region coincides with the Rio de Janeiro Transform, the maximum southward progression of North Atlantic Deep Waters and the maximum northwards extent of 3He-enriched waters with Pacific origins. Crossflowing currents in the transform and the large gap between adjacent vents may prevent a meridional connection between the vent fauna communities in the North Atlantic and along the Antarctic Ridges. This makes the region a prime target for future biogeographical studies

    PKB/SGK-resistant GSK-3 signaling following unilateral ureteral obstruction

    Get PDF
    Background/Aims: Renal tissue fibrosis contributes to the development of end-stage renal disease. Causes for renal tissue fibrosis include obstructive nephropathy. The development of renal fibrosis following unilateral ureteral obstruction (UUO) is blunted in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase SGK1. Similar to Akt isoforms, SGK1 phosphorylates and thus inactivates glycogen synthase kinase GSK-3. The present study explored whether PKB/SGK-dependent phoshorylation of GSK-3α/β impacts on pro-fibrotic signaling following UUO. Methods: UUO was induced in mice carrying a PKB/SGK-resistant GSK-3α/β (gsk-3KI) and corresponding wild-type mice (gsk-3WT). Three days after the obstructive injury, expression of fibrosis markers in kidney tissues was analyzed by quantitative RT-PCR and western blotting. Results: GSK-3α and GSK-3β phosphorylation was absent in both, the non-obstructed and the obstructed kidney tissues from gsk-3KI mice but was increased by UUO in kidney tissues from gsk-3WT mice. Expression of α-smooth muscle actin, type I collagen and type III collagen in the non-obstructed kidney tissues was not significantly different between gsk-3KI mice and gsk-3WT mice but was significantly less increased in the obstructed kidney tissues from gsk-3KI mice than from gsk-3WT mice. After UUO treatment, renal β-catenin protein abundance and renal expression of the β-catenin sensitive genes: c-Myc, Dkk1, Twist and Lef1 were again significantly less increased in kidney tissues from gsk-3KI mice than from gsk-3WT mice. Conclusions: PKB/SGK-dependent phosphorylation of glycogen synthase kinase GSK-3 contributes to the pro-fibrotic signaling leading to renal tissue fibrosis in obstructive nephropathy
    • …
    corecore