4,115 research outputs found

    Activity of species-specific antibiotics against Crohnʼs disease–associated adherent-invasive Escherichia coli

    Get PDF
    Background: Crohn's disease (CD) is associated with bacterial dysbiosis that frequently includes colonization by adherent-invasive Escherichia coli (AIEC). AIEC are adept at forming biofilms and are able to invade host cells and stimulate the production of proinflammatory cytokines. The use of traditional antibiotics for the treatment of CD shows limited efficacy. In this study, we investigate the use of species-specific antibiotics termed colicins for treatment of CD-associated AIEC. Methods: Colicin activity was tested against a range of AIEC isolates growing in the planktonic and biofilm mode of growth. Colicins were also tested against AIEC bacteria associated with T84 intestinal epithelial cells and surviving inside RAW264.7 macrophages using adhesion assays and gentamicin protection assay, respectively. Uptake of colicins into eukaryotic cells was visualized using confocal microscopy. The effect of colicin treatment on the production of proinflammatory cytokine tumor necrosis factor alpha by macrophages was assessed by an enzyme-linked immunosorbent assay. Results: Colicins show potent activity against AIEC bacteria growing as biofilms when delivered either as a purified protein or through a colicin-producing bacterial strain. In addition, colicins E1 and E9 are able to kill cell-associated and intracellular AIEC, but do not show toxicity toward macrophage cells or stimulate the production of proinflammatory cytokines. Colicin killing of intracellular bacteria occurs after entry of colicin protein into AIEC-infected macrophage compartments by actin-mediated endocytosis. Conclusions: Our results demonstrate the potential of colicins as highly selective probiotic therapeutics for the eradication of E. coli from the gastrointestinal tract of patients with CD

    Virtual-to-Real-World Transfer Learning for Robots on Wilderness Trails

    Full text link
    Robots hold promise in many scenarios involving outdoor use, such as search-and-rescue, wildlife management, and collecting data to improve environment, climate, and weather forecasting. However, autonomous navigation of outdoor trails remains a challenging problem. Recent work has sought to address this issue using deep learning. Although this approach has achieved state-of-the-art results, the deep learning paradigm may be limited due to a reliance on large amounts of annotated training data. Collecting and curating training datasets may not be feasible or practical in many situations, especially as trail conditions may change due to seasonal weather variations, storms, and natural erosion. In this paper, we explore an approach to address this issue through virtual-to-real-world transfer learning using a variety of deep learning models trained to classify the direction of a trail in an image. Our approach utilizes synthetic data gathered from virtual environments for model training, bypassing the need to collect a large amount of real images of the outdoors. We validate our approach in three main ways. First, we demonstrate that our models achieve classification accuracies upwards of 95% on our synthetic data set. Next, we utilize our classification models in the control system of a simulated robot to demonstrate feasibility. Finally, we evaluate our models on real-world trail data and demonstrate the potential of virtual-to-real-world transfer learning.Comment: iROS 201

    Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    Get PDF
    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper

    Implementation of a Pulsed-Laser Measurement System in the National Transonic Facility

    Get PDF
    A remotely-adjustable laser transmission and imaging system has been developed for use in a high-pressure, cryogenic wind tunnel. Implementation in the National Transonic Facility has proven the system suitable for velocity and signal lifetime measurements over a range of operating conditions. The measurement system allows for the delivery of high-powered laser pulses through the outer pressure shell and into the test section interior from a mezzanine where the laser is free from environmental disturbances (such as vibrations and excessive condensation) associated with operation of the wind tunnel. Femtosecond laser electronic excitation tagging (FLEET) was utilized to provide freestream velocity measurements, and first results show typical data that may be obtained using the system herein described

    A beginning sketch of the Huastec noun phrase

    Get PDF
    From the introduction: The present paper proposes a preliminary analysis of nominal phrases in Huastec, a Mayan language spoken in the states of Veracruz and San Luís Potosí, Mexico. This analysis is important in that it provides one of the first discussions of phrase structure in Huastec, a language regarded by some authorities as somewhat independent in its development in the Mayan family (for one classification of Huastec, cf. Voeglin and Voeglin (1977:224ff)). While earlier studies of Huastec (cf. Walker 1983)) have claimed the basic word order to be VSO, material found in texts has adduced little evidence for this. In fact, the most frequent orders encountered in our Huastec discourse data are SVO and VOS, respectively. Sentences given in isolation by our language consultant and co-author, Abdías Pablo, are exclusively SVO. In any case, it seems that Huastec can safely be considered VO (note that it also has both prepositions and genitive-head noun orders, two statistically common correlates of this basic word order type.) Nevertheless, we leave the question open since its resolution is tangential to the question of noun phrase structure. This study is organized as follows: First, a brief outline of the noun morphology is proposed, with indications as to the semantic range and co-occurrence restrictions among the positional classes listed. The second section addresses the facts of constituent order and configuration as well as some derived orders and relative clauses. The study concludes with an overview of pronouns

    Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data With and Without PAL Ramp

    Get PDF
    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first 2 min of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response

    Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    Get PDF
    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power level

    Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Simple Modes

    Get PDF
    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the Langley Research Center s 14- by 22-Foot wind tunnel test of the Hybrid Wing Body (HWB) full three-dimensional 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of candidate engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft and to provide a database for shielding code validation. A range of frequencies, and a parametric study of modes were generated from exhaust and inlet nacelle configurations. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular to the axis of the nacelle (in its 0 orientation) and three planes parallel were acquired from the array sweep. In each plane the linear array traversed five sweeps, for a total span of 160 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Level, and integrated Power Levels are presented in this paper; as well as the in-duct modal structure

    Active Control of Low-Speed Fan Tonal Noise Using Actuators Mounted in Stator Vanes: Part III Results

    Get PDF
    A test program to demonstrate simplification of Active Noise Control (ANC) systems relative to standard techniques was performed on the NASA Glenn Active Noise Control Fan from May through September 2001. The target mode was the m = 2 circumferential mode generated by the rotor-stator interaction at 2BPF. Seven radials (combined inlet and exhaust) were present at this condition. Several different error-sensing strategies were implemented. Integration of the error-sensors with passive treatment was investigated. These were: (i) an in-duct linear axial array, (ii) an induct steering array, (iii) a pylon-mounted array, and (iv) a near-field boom array. The effect of incorporating passive treatment was investigated as well as reducing the actuator count. These simplified systems were compared to a fully ANC specified system. Modal data acquired using the Rotating Rake are presented for a range of corrected fan rpm. Simplified control has been demonstrated to be possible but requires a well-known and dominant mode signature. The documented results here in are part III of a three-part series of reports with the same base title. Part I and II document the control system and error-sensing design and implementation

    Recommended Practice for Use of Faraday Probes in Electric Propulsion Testing

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143029/1/1.B35696.pd
    • …
    corecore