623 research outputs found

    Potential utilization of scallop viscera for solid waste management and as feedstuff for swine

    Get PDF
    Waste management has been identified as a major problem which will threaten the economic security of Florida's seafood industry within the next ten years (1). One of the primary concerns is treatment and disposal of solid wastes resulting from seafood processing. Utilization of scallop viscera as silage, much like that developed for waste fish and fish offal (3,4), could represent a practical solid waste treatment option which offers the additional benefit of a protein feed supplement for production of swine. (27pp.

    Alignment and arm length measurement of the Swing Arm Profilometer using a laser tracker

    Get PDF
    In this paper, we present the use of the laser tracker to aid the alignment of a Swing Arm Profilometer (SAP) and measure the length of the swinging arm, thus calibrating the operating radius of the SAP. The measurement uncertainty analysis is given. A laser tracker is used to align the SAP to ensure the path of the probe head passes through the rotary axis of the rotary table. By building the coordinate system by laser tracker measurement on the rotary table and measuring the swinging arc of the arm, we can determine whether the swinging path of the probe head passes through the rotary axis of the rotary table and perform the corresponding adjustment if necessary. A laser tracker is also used to measure the arm length, i.e. the length between the probe's ball centre and the rotation axis of the swinging arm. By placing a retroreflector or the tracker ball on the swinging arm and scanning the swinging path of the arm using the laser tracker, we can acquire the data of an arc and fit to determine the length of the probe head center to rotation axis of swinging arm, thus giving accurate SAP calibration data

    Misfit of rigid tools and interferometer subapertures on off-axis aspheric mirror segments

    Get PDF
    Rigid tools can confer advantages at certain stages of manufacturing off-axis mirror segments, but the misfit due to surface asphericity and asymmetry poses constraints on their application. Types of misfit are classified and, using least squares, the best-fit tool forms with different distances from the pole of the parent asphere are calculated. The outer mirror segment for the European extremely large telescope is taken as a case-study, assuming a rigid tool size of 150 mm. A simple independent approximation validates the calculation. A close parallel is wavefront misfit in subaperture interferometry, which is also considered. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE)

    Research on fabrication of mirror segments for E-ELT

    Get PDF
    The next generation ground-based giant telescope, the European Extremely Large Telescope (E-ELT), under development by the European Southern Observation (ESO) 1, will have nearly 1000 hexagonal segments of 1.45m across the flats. Fast processing of these segments with high form and edge specifications has proven to be a challenge. The Zeeko Precessions sub-aperture bonnet polishing plays an important role providing capability for polishing the surface and correcting the form to meet this target 2,3. BoXTM grinding has been adopted. This technology has the advantage of fast generating of aspheric surface with very low subsurface damage (SSD) 4. This will avoid the need of removing thick layer of stock at polishing stage to remove SSD. However the result grinding signatures has proven to be problematic for direct polishing with Zeeko's standard bonnet technology. A novel 'grolishing' process which stands between 'grinding' and 'polishing' has been developed to deal with mid-spatial features left by BoXTM grinding. This tool is designed base on Zeeko's R80 bonnet which will fits directly into the company's IRP series machines. The process parameters have been optimised to have signatures less than 10 nm PV. The edge profile is 1μm upstand within 40 mm edge zone. The 'grolished' surface can be directly pre-polished together with all the form corrections. To meet the fabrication time target, R160 bonnet is used with 50 mm polishing spot, this will provide removal rate of 9.8 mm3/minute, which can be employed at pre-polishing stage and some form correction. Process parameters have been developed to leave slow upstand at edge zone without any form of sharp edge downturn. The following form correction stage, which employs smaller polishing spot of about 20 mm diameter, will continue to remove form errors of spatial frequency between 0.02 - 0.05 1/mm. Furthermore, the upstand edge will be, to a large part, removed at this stage. It is demonstrated that the form specs can be achieved after this process. The following smoothing process will improve surface textures and remove edge errors. Local edge rectification is normally necessary to bring the edge at same level. A final smoothing process will bring the bulk area and edge zone to meet all the specifications. © 2012 SPIE

    Accidental and methodical defects of generation of precision and ultraprecision surfaces of polymer optics

    Get PDF
    Widespread adoption of precision and ultraprecision articles from the polymeric materials creates a need for the understanding of a mechanism of the new high quality surfaces generation by the controlled fracture processes in the single-point diamond machining. The efficacious way for this understanding is a creation of the model of the surface layer forming process as result of the formation of its accidental and methodical defects by the precision microcutting

    On the possibility of increasing the throughput of astronomical spectrographs by overfilling the dispersing element

    Get PDF
    This paper describes a technique which has been applied to the new AAT coudé échelle spectrograph, under construction at UCL, to increase its throughput without degrading resolution. The effect of illuminating the slit with stellar images and extended objects is considered and a method of increasing the flexibility of the design is presented. The telescope focal ratio is modified by the addition of a lens in front of the slit. The degree of modification can be adjusted to optimize the spectrograph’s light throughput under difficult seeing conditions or for different applications. The technique may also be relevant to other spectrographs being designed and could even find applications in some existing instruments

    The regulation of plant secondary metabolism in response to abiotic stress : interactions between heat shock and elevated CO2

    Get PDF
    Future climate change is set to have an impact on the physiological performance of global vegetation. Increasing temperature and atmospheric CO2 concentration will affect plant growth, net primary productivity, photosynthetic capability, and other biochemical functions that are essential for normal metabolic function. Alongside the primary metabolic function effects of plant growth and development, the effect of stress on plant secondary metabolism from both biotic and abiotic sources will be impacted by changes in future climate. Using an untargeted metabolomic fingerprinting approach alongside emissions measurements, we investigate for the first time how elevated atmospheric CO2 and temperature both independently and interactively impact on plant secondary metabolism through resource allocation, with a resulting “trade-off” between secondary metabolic processes in Salix spp. and in particular, isoprene biosynthesis. Although it has been previously reported that isoprene is suppressed in times of elevated CO2, and that isoprene emissions increase as a response to short-term heat shock, no study has investigated the interactive effects at the metabolic level. We have demonstrated that at a metabolic level isoprene is still being produced during periods of both elevated CO2 and temperature, and that ultimately temperature has the greater effect. With global temperature and atmospheric CO2 concentrations rising as a result of anthropogenic activity, it is imperative to understand the interactions between atmospheric processes and global vegetation, especially given that global isoprene emissions have the potential to contribute to atmospheric warming mitigation

    Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies

    Get PDF
    This paper addresses computer numerical control (CNC) polishing of aspheric or freeform optics. Prior CNC grinding of the asphere tends to produce mid-spatial frequencies (MSFs) at some level. Precessions polishing can rectify these, but the very ability of the bonnet tooling to adapt to the local asphere enables it to do so, at least in part, to similar spatial frequencies in the MSFs. To accelerate smoothing, hard tools can, in principle, be used, but aspheric misfit is often assumed to preclude this. In this paper, we explore new insight into the role of abrasive particle size in accommodating misfit. First, we report on a glass-bending rig to produce a continuous range of complex surfaces, while withstanding process forces. Then, we describe how this was used to evaluate the triangle of misfit, abrasive size, and MSFs produced for hard rotating tools. This has revealed a regime in which such tools can be used without introducing significant new MSFs, as evidenced by manufacture of prototype off-axis aspheric segments for the European Extremely Large Telescope project

    An Adaptive Secondary Mirror demonstrator: Construction and Preliminary Evaluation

    Get PDF
    Adaptive optics combines technologies that enable the correction of the wavefront distortion caused by the earth‘s atmospheric turbulence in real time. Adaptive secondary mirror (ASM) systems have been proposed and are now being developed. ASMs have advantages over conventional AO systems in terms of throughput, polarisation and IR emissivity. Previously, we reported the design of an ASM demonstrator along with its predicted performance. This paper reports the construction techniques and the results from the preliminary static and dynamic testing of such a demonstrator. In particular assembly methods that preserve the optical quality of the mirror are presented along with experimentally measured mirror influence functions and closed loop tip/tilt performance

    The role of robotics in computer controlled polishing of large and small optics

    Get PDF
    Following formal acceptance by ESO of three 1.4m hexagonal off-axis prototype mirror segments, one circular segment, and certification of our optical test facility, we turn our attention to the challenge of segment mass-production. In this paper, we focus on the role of industrial robots, highlighting complementarity with Zeeko CNC polishing machines, and presenting results using robots to provide intermediate processing between CNC grinding and polishing. We also describe the marriage of robots and Zeeko machines to automate currently manual operations; steps towards our ultimate vision of fully autonomous manufacturing cells, with impact throughout the optical manufacturing community and beyond
    corecore