1,970 research outputs found

    Lifetime statistics of quantum chaos studied by a multiscale analysis

    Get PDF
    In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a Silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines graph theory, energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.Comment: 4 pages, 6 figure

    Energy Landscape and Global Optimization for a Frustrated Model Protein

    Get PDF
    The three-color (BLN) 69-residue model protein was designed to exhibit frustrated folding. We investigate the energy landscape of this protein using disconnectivity graphs and compare it to a Go model, which is designed to reduce the frustration by removing all non-native attractive interactions. Finding the global minimum on a frustrated energy landscape is a good test of global optimization techniques, and we present calculations evaluating the performance of basin-hopping and genetic algorithms for this system.Comparisons are made with the widely studied 46-residue BLN protein.We show that the energy landscape of the 69-residue BLN protein contains several deep funnels, each of which corresponds to a different ÎČ-barrel structure

    NP-hardness of the cluster minimization problem revisited

    Full text link
    The computational complexity of the "cluster minimization problem" is revisited [L. T. Wille and J. Vennik, J. Phys. A 18, L419 (1985)]. It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analog of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested.Comment: 8 pages, 2 figures, accepted to J. Phys. A: Math. and Ge

    Energy landscapes and persistent minima.

    Get PDF
    We consider a coarse-graining of high-dimensional potential energy landscapes based upon persistences, which correspond to lowest barrier heights to lower-energy minima. Persistences can be calculated efficiently for local minima in kinetic transition networks that are based on stationary points of the prevailing energy landscape. The networks studied here represent peptides, proteins, nucleic acids, an atomic cluster, and a glassy system. Minima with high persistence values are likely to represent some form of alternative structural morphology, which, if appreciably populated at the prevailing temperature, could compete with the global minimum (defined as infinitely persistent). Threshold values on persistences (and in some cases equilibrium occupation probabilities) have therefore been used in this work to select subsets of minima, which were then analysed to see how well they can represent features of the full network. Simplified disconnectivity graphs showing only the selected minima can convey the funnelling (including any multiple-funnel) characteristics of the corresponding full graphs. The effect of the choice of persistence threshold on the reduced disconnectivity graphs was considered for a system with a hierarchical, glassy landscape. Sets of persistent minima were also found to be useful in comparing networks for the same system sampled under different conditions, using minimum oriented spanning forests.D.J.W and J.M.C gratefully acknowledge funding from the European Research Council [267369].This is the author accepted manuscript. The final version is available at http://scitation.aip.org/content/aip/journal/jcp/144/5/10.1063/1.4941052

    Stress release mechanisms for Cu on Pd(111) in the submonolayer and monolayer regimes

    Get PDF
    We study the strain relaxation mechanisms of Cu on Pd(111) up to the monolayer regime using two different computational methodologies, basin-hopping global optimization and energy minimization with a repulsive bias potential. Our numerical results are consistent with experimentally observed layer-by-layer growth mode. However, we find that the structure of the Cu layer is not fully pseudomorphic even at low coverages. Instead, the Cu adsorbates forms fcc and hcp stacking domains, separated by partial misfit dislocations. We also estimate the minimum energy path and energy barriers for transitions from the ideal epitaxial state to the fcc-hcp domain pattern.Comment: 4 pages, 4 figure

    Relationships Between the Nutrient Content of Irrigated Pasture on Offer and that Selected by Grazing Dairy Cows

    Get PDF
    An experiment was conducted to determine the dry matter, energy, crude protein and fibre intake by dairy cows in late lactation when grazing perennial pasture offered at allocations of 15, 20, 30 and 40 kg DM/cow.day. The cows consistently selected a diet 10% higher in digestibility than that on offer. In contrast, cows selected diets with crude protein levels increasing from 22% to 40%, above that in pasture on offer, as pasture allocation increased. A similar pattern was observed for the intake of white clover (Trifolium repens L). The increase in the concentration of crude protein in the diet (as allocation increased) was due to the consumption of white clover and a decrease in the consumption of the dead components of the sward. On the other hand, the neutral detergent fibre content of the diet selected was lower than that on offer, and declined as pasture allocation increased

    Reversible Capture and Release of a Ligand Mediated by a Long-Range Relayed Polarity Switch in a Urea Oligomer

    Get PDF
    [Image: see text] Ethylene-bridged oligoureas characterized by a continuous, switchable chain of hydrogen bonds and carrying a binding site (an N,Nâ€Č-disubstituted urea) for a hydrogen-bond-accepting ligand (a phosphine oxide) were synthesized. These oligomers show stronger ligand binding when the binding site is located at the hydrogen-bond-donating terminus than when the same binding site is at the hydrogen-bond-accepting terminus. An acidic group at the terminus remote from the binding site allows hydrogen bond polarity, and hence ligand binding ability, to be controlled remotely by a deprotonation/reprotonation cycle. Addition of base induces a remote conformational change that is relayed through up to five urea linkages, reducing the ability of the binding site to retain an intermolecular association to its ligand, which is consequently released into solution. Reprotonation returns the polarity of the oligomer to its original directionality, restoring the function of the remote binding site, which consequently recaptures the ligand. This is the first example of a synthetic molecular structure that relays intermolecular binding information, and these “dynamic foldamer” structures are prototypes of components for chemical systems capable of controlling chemical function from a distance

    Plant and Sward Characteristics to Achieve High Intake in Ruminants

    Get PDF
    Key points Intake is affected by complex interactions between signals from the digestive tract, intermediary metabolism and energy supply, and behavioural signals associated with learned behaviours or sensory signals. The ideal sward needs to have characteristics that are similar to total mixed rations to achieve high intake and animal performance. Genetic manipulation of plants may offer an accelerated rate of plant improvement, but benefits need to be demonstrated in a systems context

    Structural Transitions and Global Minima of Sodium Chloride Clusters

    Full text link
    In recent experiments on sodium chloride clusters structural transitions between nanocrystals with different cuboidal shapes were detected. Here we determine reaction pathways between the low energy isomers of one of these clusters, (NaCl)35Cl-. The key process in these structural transitions is a highly cooperative rearrangement in which two parts of the nanocrystal slip past one another on a {110} plane in a direction. In this way the nanocrystals can plastically deform, in contrast to the brittle behaviour of bulk sodium chloride crystals at the same temperatures; the nanocrystals have mechanical properties which are a unique feature of their finite size. We also report and compare the global potential energy minima for (NaCl)NCl- using two empirical potentials, and comment on the effect of polarization.Comment: extended version, 13 pages, 8 figures, revte
    • 

    corecore