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ABSTRACT: Ethylene-bridged oligoureas characterized by a continuous, switchable chain of hydrogen bonds and carrying a
binding site (an N,N′-disubstituted urea) for a hydrogen-bond-accepting ligand (a phosphine oxide) were synthesized. These
oligomers show stronger ligand binding when the binding site is located at the hydrogen-bond-donating terminus than when the
same binding site is at the hydrogen-bond-accepting terminus. An acidic group at the terminus remote from the binding site allows
hydrogen bond polarity, and hence ligand binding ability, to be controlled remotely by a deprotonation/reprotonation cycle.
Addition of base induces a remote conformational change that is relayed through up to five urea linkages, reducing the ability of the
binding site to retain an intermolecular association to its ligand, which is consequently released into solution. Reprotonation returns
the polarity of the oligomer to its original directionality, restoring the function of the remote binding site, which consequently
recaptures the ligand. This is the first example of a synthetic molecular structure that relays intermolecular binding information, and
these “dynamic foldamer” structures are prototypes of components for chemical systems capable of controlling chemical function
from a distance.

The ability to relay, amplify, and process information
distinguishes molecular systems in a biological context

from those that are purely chemical.1−4 Information processing
in biology involves intermolecular interactions, either between
biological macromolecules5 or between a macromolecule and a
small ligand,6,7 with messages transmitted by way of conforma-
tional changes that propagate through those macromole-
cules.8,9

Communication devices10 of this type are commonplace in
biology,11−14 and analogous spatial molecular communication
has been achieved in synthetic molecules by induction of
conformational changes at the terminus of an oligomeric
structure.15−17 Examples have involved communication of
chirality through contiguous atropisomeric axes18 or the screw-
sense preference of a helix19 or communication of polarity
through a flexible chain of hydrogen bonds.20,21 Without
exception, such synthetic communication devices either exploit
intramolecular interactions22,23 or undergo irreversible change
through chemical reaction,12,13,24 precluding more general and
reversible chemical function. To date, there is no artificial
molecular communication device that allows continuous
remote control of intermolecular interactions commonly seen
in biology.
Here we report a molecular communication device that

enables the control of noncovalent and reversible intermo-
lecular interactions by a signal that is transmitted through a
conformational change. Our general design concept is
illustrated in Figure 1. An oligomeric structure in its “native
state” (a) carries a terminal binding site that selectively binds a
ligand. On input of a signal remote from the binding site (b), a
conformational change is communicated to the binding site,
disrupting binding and releasing the ligand into solution (c).
Ligand release is reversible: removal of the input signal allows

the binding site to reassemble and the ligand to return to its
bound state.
In this instance, the input signal is provided by a change in

pH, which leads to the reversible deprotonation and
reprotonation of a thiourea functional group that “translates”
pH into conformational change by mutating from a hydrogen
bond acceptor to a hydrogen bond donor. This switch in
polarity reverses the directionality of a chain of hydrogen
bonds linking a series of urea functions, which disrupts the
intermolecular interaction of a hydrogen bond acceptor (a
phosphine oxide) with a terminal binding site.
We chose as this terminal binding site an electron-deficient

N,N′-disubstituted urea function (Ar = 3,5-bis(trifluoro-
methyl)phenyl, abbreviated as “BTMP urea”).25 To establish
the ability of induced hydrogen bond polarity to govern the
local conformation of the BTMP ureaand hence its
availability for ligand bindingoligomers 1 and 2 were
synthesized (Figure 2a) in which each polarity-controlling
group (the thiourea hydrogen bond donor in 1 and the N,N′-
dimethylurea hydrogen bond acceptor in 2) is separated from
the BTMP urea by a hydrogen-bonded chain of three
trisubstituted ureas.20 We expected these molecules to
maximize the stability of their hydrogen-bonded network by
adopting hydrogen-bonding patterns of opposite directionality.
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Oligomers 1 and 2 each showed a major conformer
populated to ≥75% in CD2Cl2 (25 mM) at −10 °C (Figures
S1−S11). In 1, the more upfield chemical shifts of the alkyl
and aryl N−H signals of the BTMP urea (Figure 2a: δH = 5.72
and 7.89 ppm, respectively) indicate that these (green) N−Hs
are not involved in intramolecular hydrogen bonding, while in
2, the (orange) alkyl N−H signal appears significantly further
downfield (δH = 7.10 ppm) due to hydrogen bonding to the
adjacent urea carbonyl group. In both 1 and 2, a strong NOE
correlation between the N−H signals of the BTMP urea
(Figures S5 and S11) shows that the binding site adopts a
syn,syn conformation, with the N−H bonds orientated parallel
to one another. In 1, these N−H bonds are available for
intermolecular hydrogen bonding, while 2 cannot bind an
external ligand without breaking an intramolecular hydrogen
bond. The conformational distribution of 1 is largely
insensitive to concentration and the number and identity of
the internal urea linkages but does vary notably with solvent
(Table S1).
Differences in the binding properties of 1 and 2 were

explored by 31P NMR using the strong hydrogen bond
acceptor Bu3PO (β = 10.7).26,27 Titration of Bu3PO with 1 and
2 (0−9 equiv) in CH2Cl2 (2 mM) resulted in values of ΔδP
(from the initial δP = 47.23 ppm) of +5.76 and +3.11 ppm,
respectively (Figure 2b). A 1:1 binding model gave binding
constants of 1490 ± 82 M−1 (for 1) and 311 ± 21 M−1 (for
2),28 showing that 1 binds the phosphine oxide almost 5 times
more strongly than 2. The BTMP urea is itself a powerful
hydrogen bond donor,20 but these results demonstrate that the

even more strongly hydrogen-bond-donating thiourea in 1 can
override the BTMP urea’s hydrogen-bonding preference.
Further information about binding was gained by using

model compounds 3−5. N,N′-Disubstituted urea 3, an isolated
binding site, has a Bu3PO binding constant of 715 ± 16 M−1

(ΔδP at 9 equiv = +5.04 ppm), showing that binding is
enhanced by the “matched” polarity of 1 and weakened by the
“mismatched” polarity of 2. Under the same conditions,
titrations of Bu3PO with a 1:1 mixture of 3 and 4 (an isolated
thiourea function), as well as a 1:1 mixture of 3 and 5 (an
isolated N,N′-dimethylurea function), gave similar binding
curves to 3 alone.29 Neither 4 nor 5 alone (5 equiv) had any
significant effect on the 31P NMR chemical shift of Bu3PO
(ΔδP < 0.4 ppm, Figures S35 and S37), confirming that the
values of ΔδP observed in all titrations (Figure 2b) are solely

Figure 1. A conceptual framework for modulating ligand binding
affinity through remote induction of global conformational changes.

Figure 2. (a) BTMP ureas 1−5 (Ar = [3,5-(CF3)2]C6H3; Ar′ = p-
BuOC6H4; Ar″ = p-MeOC6H4). (b) Titration experiments showing
the change in the chemical shift in the 31P NMR spectrum of Bu3PO
(2 mM, CH2Cl2) when titrated with ureas (0−9 equiv).
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due to binding of Bu3PO to the BTMP urea. Collectively, these
results confirm that the opposing polarities of the hydrogen
bond chains in 1 and 2, and the conformational preferences
consequently induced in the BTMP urea, are responsible for
their differing binding affinities to Bu3PO.
Using this information, we designed a communication

device in which a BTMP urea is switched remotely between
the role of a hydrogen-bond donor and a hydrogen-bond
acceptor in response to an external input. Switchable control
was enabled by a relatively acidic thiourea that in its neutral
form acts as a powerful hydrogen bond donor but on treatment
with base is deprotonated to reveal a hydrogen-bond-accepting
thiourea anion. Representative thiourea 4 provided a model of
this behavior. 1H NMR spectroscopy in CD2Cl2 confirmed that
the thiourea N−H (δH = 10.58 ppm) hydrogen bonds strongly
with the adjacent urea carbonyl (Figure 3). Consequently, the

N−H of the adjacent urea (δH = 6.46 ppm) forms no
intramolecular hydrogen bond. Upon deprotonation of the
thiourea with 1 equiv of phosphazene base t-BuNP(NMe2)3
(chosen because the conjugate acid [t-BuHN−P(NMe2)3]

+ is
a poor hydrogen bond donor), loss of the thiourea N−H signal
(yellow) is accompanied by upfield shifts of the thiourea aryl
protons (gray) and an upfield shift of the thiocarbonyl signal in
the 13C NMR spectrum (Figure S26). Concurrently, the urea
N−H signal (green) shifts downfield to δH = 9.35 ppm (ΔδH =
+2.89 ppm), marking the formation of a strong hydrogen bond
to the resultant thiourea anion and a switch in hydrogen-bond
polarity. Reprotonation of the thiourea anion in the same
mixture with 1 equiv of [4-Cl-pyH]+·[BArF4]

− returned the
NMR signals of 4 to their original positions, demonstrating

that the byproducts [t-BuHN−P(NMe2)3]
+·[BArF4]

− and 4-
chloropyridine do not interfere with the native hydrogen
bonding in 4.
The relayed effect of deprotonating the thiourea function of

1 on the terminal binding of the BTMP urea to Bu3PO was
investigated by using 31P NMR spectroscopy (Figure 4). First,

1 (5 equiv) was added to bind the Bu3PO, resulting in a
downfield shift from δP = 47.23 ppm (free Bu3PO) to δP =
52.66 ppm (ΔδP = +5.43 ppm: Bu3PO 92% bound, Figure
S17). Upon addition of equimolar t-BuNP(NMe2)3,
deprotonation of the thiourea of 1 (Figure S31) was
accompanied by a new signal arising from [t-BuHN−
P(NMe2)3]

+·1− in the 31P NMR spectrum (Figure S30).30

Simultaneously, the Bu3PO signal shifted upfield to δP = 48.31
ppm (ΔδP = −4.35 ppm) (Figure 4a), consistent with the
release of Bu3PO from the remote binding site as a result of
thiourea deprotonation (Figure S31).
Additional control experiments (Figure 4b−d) confirmed

that induced release of Bu3PO results from a relayed polarity
switch. Bu3PO was treated with a series of modified urea
oligomers (5 equiv), each lacking one or more components of
the integrated communication system, followed by t-BuN
P(NMe2)3 (5 equiv). Oligomer 6, whose binding site is
blocked by alkylation, was unable to bind Bu3PO, and minimal
ΔδP resulted with either 6 or 6 + t-BuNP(NMe2)3 (Figure
4b, Figures S38 and S39). This result confirms that the
conjugate acid [BuHN−P(NMe2)3]

+ is itself unable to
hydrogen bond to Bu3PO. The isolated urea 3 binds Bu3PO
(ΔδP = +4.76 ppm, Figure S32) but is resistant to
deprotonation by t-BuNP(NMe2)3 (Figure 4c and Figure
S32). When Bu3PO was complexed to 3 in the presence of 4
(ΔδP = +4.58 ppm)representing a “broken” device with a
disconnected binding siteaddition of base (Figure 4d,
Figures S33 and S34) was accompanied by a modest upfield
shift of Bu3PO (ΔδP = −1.71 ppm), indicating weakly
competitive intermolecular binding of 3 to the thiourea
anion of 4−, which partially liberates the phosphine oxide.31

Figure 3. (a) Base-mediated hydrogen bond polarity switching of
thiourea transmitter 4. (b) 1H NMR spectrum of 4 in CD2Cl2 at 42
mM, (c) with the addition of t-BuNP(NMe2)3 (1 equiv) and (d)
on addition of [4-Cl-pyH]+·[BArF4]

− (1 equiv). Ar = ArF = [3,5-
(CF3)2]C6H3; Ar″ = p-MeOC6H4.

Figure 4. 31P NMR chemical shift of Bu3PO (2 mM, CD2Cl2) when
treated with 5 equiv of a variant urea oligomer (namely (a) 1, (b) 6,
(c) 3, and (d) 3 and 4) followed by 5 equiv of t-BuNP(NMe2)3. Ar
= [3,5-(CF3)2]C6H3; Ar′ = p-BuOC6H4.
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Figure 5. (a) Base-sensitive thiourea-capped oligomer 7 functioning as a ligand-capturing device. 7 captures Bu3PO by hydrogen bonding at its
terminal disubstituted urea binding site. Deprotonation of the remote thiourea with t-BuNP(NMe2)3 transmits a global polarity change to the
disubstituted urea which releases the phosphine oxide; reprotonation with [4-Cl-pyH]+·[BArF4]

− recaptures the phosphine oxide. (b) Characteristic
changes in the 31P NMR chemical shift of Bu3PO (2 mM, CD2Cl2) on adding 7 (5 equiv), followed by repeated sequential additions of t-BuN
P(NMe2)3 (5 equiv) and [4-Cl-pyH]+·[BArF4]− (5 equiv). Ar = ArF = [3,5-(CF3)2]C6H3; Ar′ = p-BuOC6H4.
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A fully functioning device capable of reversible induced
capture and release of a ligand over multiple cycles was
demonstrated with the homologous oligourea 7, which
communicates information through a hydrogen-bonded chain
of five internal ureas (Figure 5). The protonation state of the
transmitting thiourea, which remotely controls the receiver’s
binding affinity for the ligand, was monitored by 1H NMR
(Figure S41), while the state of the ligandbound or free
was simultaneously monitored by 31P NMR.
The switching cycle started with the addition of 7 (5 equiv)

to bind Bu3PO (Figure 5), which induced a downfield shift (δP
= 52.51 ppm, ΔδP = +5.28 ppm) in the 31P NMR spectrum.
Thiourea deprotonation with t-BuNP(NMe2)3 released this
Bu3PO back into solution (ΔδP = −4.47 ppm). The ligand was
then repeatedly recaptured and released by three sequential
cycles of reprotonation with [4-Cl-pyH]+·[BArF4]

− and
deprotonation with t-BuNP(NMe2)3 in one pot. Finally,
the addition of further [4-Cl-pyH]+·[BArF4]

− recaptured the
Bu3PO (δP = 52.28 ppm). Even after 4.5 capture and release
cycles, communication device 7 maintains its binding function
with minimal loss in efficiency.
In summary, a molecular communication device that can

reversibly and remotely trigger a chemical responsenamely
the release and recapture of a ligandhas been realized.
Information about the pH of an acidic thiourea’s surroundings
is converted to communicable hydrogen-bond polarity, which
is relayed through a chain of hydrogen bonds to control the
binding properties of a remote N,N′-disubstituted urea.
Capture and release of the ligand can then be switched upon
sequential treatment with acid and base several times in one
pot. The remote modulation of an intermolecular interaction is
reminiscent of actin treadmilling, suggesting future use of
polarity reversal in the design of actin mimetics.32 The ability
to bind strong hydrogen bond acceptors, including Bu3PO,

25

correlates strongly with catalytic activity in hydrogen bond
donors,33,34 suggesting that structures related to 1 and 7 might
furthermore function as remotely switchable catalysts.
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