5 research outputs found

    National comparison of methods for determination of radon in water

    Get PDF
    The article describes three interlaboratory experiments concerning 222Rn determination in water samples. The fi rst two experiments were carried out with the use of artifi cial radon waters prepared by the Laboratory of Radiometric Expertise (LER), Institute of Nuclear Physics, Polish Academy of Sciences in Kraków in 2014 and 2018. The third experiment was performed using natural environment waters collected in the vicinity of the former uranium mine in Kowary in 2016. Most of the institutions performing radon in water measurements in Poland were gathered in the Polish Radon Centre Network, and they participated in the experiments. The goal of these exercises was to evaluate different measurement techniques used routinely in Polish laboratories and the laboratories’ profi ciency of radon in water measurements. In the experiment performed in 2018, the reference values of 222Rn concentration in water were calculated based on the method developed at LER. The participants’ results appeared to be worse for low radon concentration than for high radon concentrations. The conclusions drawn on that base indicated the weaknesses of the used methods and probably the sampling. The interlaboratory experiments, in term, can help to improve the participants’ skills and reliability of their results

    Radon intercomparison tests – Katowice, 2016

    Get PDF
    At the beginning of the year 2016, the representatives of the Polish Radon Centre decided to organize profi ciency tests (PTs) for measurements of radon gas and radon decay products in the air, involving radon monitors and laboratory passive techniques. The Silesian Centre for Environmental Radioactivity of the Central Mining Institute (GIG), Katowice, became responsible for the organization of the PT exercises. The main reason to choose that location was the radon chamber in GIG with a volume of 17 m3, the biggest one in Poland. Accordingly, 13 participants from Poland plus one participant from Germany expressed their interest. The participants were invited to inform the organizers about what types of monitors and methods they would like to check during the tests. On this basis, the GIG team prepared the proposal for the schedule of exercises, such as the required level(s) of radon concentrations, the number and periods of tests, proposed potential alpha energy concentration (PAEC) levels and also the overall period of PT. The PT activity was performed between 6th and 17th June 2016. After assessment of the results, the agreement between radon monitors and other measurement methods was confi rmed. In the case of PAEC monitors and methods of measurements, the results of PT exercises were consistent and confi rmed the accuracy of the calibration procedures used by the participants. The results of the PAEC PTs will be published elsewhere; in this paper, only the results of radon intercomparison are described

    Natural background radiation at Lab 2 of Callio Lab, Pyhäsalmi mine in Finland

    No full text
    Abstract In operating mines, as well as in deep locations for planned scientific activities, it is essential to recognize the natural background radiation from the point of view of both occupational hazard and experimental background. Callio Lab, located in the Pyhäsalmi Mine, Finland, is one of the underground laboratories participating in the Baltic Sea Underground Innovation Network (BSUIN). The characterization of the natural background radiation was done at the Lab 2, which is the deepest located in Callio Lab. It involved in-situ gamma spectrometry, thermal neutron flux measurements, radon concentration determination, and α / β laboratory spectrometry of water and rock samples. At a depth of 1436 m (~4000 m w.e.) within the felsic volcanic bedrock occurs a volcanogenic massive sulphide deposit, wherein a thermal neutron flux of (1.73 ± 0.10) × 10−5 cm−2s−1, a gamma-ray flux of 12.7 ± 1.5 cm−2s−1, a gamma-ray dose of 0.158 ± 0.029 μ Sv/h and a radon concentration of 213.3 Bq/m³ ± 11% were determined
    corecore