19 research outputs found

    Long lived natural radioactive elements in SPA waters of southern Poland - dose assessment and health hazard evaluation

    Get PDF
    The aim of this study was to determine the activity concentrations of 234;238U isotopes in mineral, medicinal and spring waters in spas situated in the Sudety and the Outer Carpathian Mountains and to compare the uranium content found in waters from these regions. Samples were collected over a period of 7 years (2005–2011) from 86 water intakes from the Sudety Mountains and Fore-Sudetic block and from 37 water intakes from Outer Carpathians. On the basis of the calculated activity concentrations of 234;238U as well as the existing data on 226;228Ra, the annual effective doses resulting from the consumption of these isotopes were evaluated

    Investigation of the influence of chamber construction parameters on radon exhalation rate

    Get PDF
    Radon exhalation from ground is a process dependent on the emanation and migration of radon through ambient air. Most studies on radon exhalation from soil were performed regarding the influence of meteorological and soil parameters. As radon exhalation rate can be affected by the internal properties of the sample, it may also be influenced by the exhalation chamber geometry such as volume-to-area (V/S) ratio or other construction parameters. The measurements of radon exhalation from soil were made using different constructions of accumulation chamber and two types of radon monitors: RAD7 (Durridge) and AlphaGUARD PQ2000PRO (Genitron). The measurements were performed on one site in two locations and approximately at the same time. The first tests did not show the correlations of exhalation rate values and the chamber's construction parameters and their geometrical dimensions. However, when examining the results, it seems that there are still too many factors that might have affected the process of radon exhalation. The future experiments are planned to be conducted in controlled laboratory conditions

    The Occurrence of Selected Radionuclides and Rare Earth Elements in Waste at the Mine Heap from the Polish Mining Group

    Get PDF
    The paper presents the results of research on rare earth elements (REY) and selected radionuclides in barren rocks deposited on a heap at a mine belonging to the Polish Mining Group (the largest producer of hard coal in EU countries). The maximum concentration of REEs determined in silstones was 261.6 mg/kg and in sandstones 221.2 mg/kg. The average uranium and thorium content in silstones was 6.8 mg/kg and 11.6 mg/kg, respectively. On the other hand, the samples of burnt coal shales contain on average 3.5 mg/kg of uranium and 9.7 mg/kg of thorium. In all coal waste samples, the REE values are higher than in hard coal (15.7 mg/kg). Carriers of REY, uranium, and thorium in coal waste are detritic minerals: monazite and xenotime, which are part of the grain skeleton of barren rocks. Coal waste samples are characterized by a variable distribution of REY concentrations as well as a variable content of radionuclides. The 226Ra, 228Ra, and 40K measurements in the investigated samples were performed using the gamma spectrometry technique. The concentrations of the analyzed isotopes differed depending on the mineralogical composition of the investigated samples. The present study results may be important in determining the possibility of utilization of wastes of barren rocks stored in the mine heap and in assessing environmental and radiological hazards

    Natural radioactivity of groundwater from the Przerzeczyn-Zdrój Spa

    Get PDF
    The present authors performed investigations of natural radioactivity in groundwater from the Przerzeczyn- -Zdrój Spa. Some of the waters are regarded as medical and are used for balneological purposes. Samples from seven groundwater intakes were collected 5 times over a period of 8 years (1999–2007). In order to obtain necessary data, two different nuclear spectrometry techniques were applied: α spectrometry and liquid scintillation spectrometry. The activity concentrations of 222Rn varied in the range from 15±2 Bq/l to 154±22 Bq/l. The results of activity concentrations of 226,228Ra varied from below 10 mBq/l to 30±1.5 mBq/l and from below 30 mBq/l to 60±4 mBq/l, respectively. Activity concentration lower than minimum detectable activity (MDA) was obtained for 3 samples for 226Ra and 4 for 228Ra determinations out of 7 investigated samples. The uranium content in the studied samples was determined once and the value ranged from 4.5±0.6 mBq/l to 13.6±1.2 mBq/l for 238U and from 17.1±0.9 mBq/l to 52.2±2.8 mBq/l for 234U. All obtained values for uranium isotopes showed activity concentrations above MDA. The activity ratios 234U/238U, 222Rn/226Ra and 226Ra/238U and the correlations between different isotopes concentrations were evaluated

    Radioactivity of Mt. Etna volcano and radionuclides transfer to groundwater

    Get PDF
    The paper presents the results of a radiometric survey carried out on the eastern flank of Mt. Etna over an area of approximately 120 km2. Activity concentrations of 238,234U, 232,230,228Th, 226,228Ra, from 238U and 232Th decay chains, and potassium 40K were determined using α- and γ- spectrometry techniques. All rock samples presented activity concentrations of U, Th and Ra isotopes ranging from 20 Bq kg-1 to about 90 Bq kg-1, and they showed no particular compositional variations over the investigated area. Based on their respective elemental concentrations, the isotopic ratios of different elements were studied to check the presence of radioactive equilibrium, or disequilibrium, in the decay chains. Moreover, an attempt to calculate radionuclide transfer factors from soil to water was made, and the radiological risk resulting from ingestion of these isotopes contained in drinking water was calculated. The results were compared with current regulations on the quality of drinking water

    Natural radioactivity content in groundwater of Mt. Etna's eastern flank and gamma background of surrounding rocks

    Get PDF
    Waters of Mt. Etna are the main source of drinking water for the local population and are also distributed in municipal supply systems to neighbouring areas. Radioactivity in underground waters and surrounding rocks from the eastern flank of Mt. Etna was investigated on the basis of 9 water and 8 rock samples from 12 localities altogether. Three samples were from water drainage galleries and six from water wells. All water intakes are used for consumption. Activity concentration of uranium isotopes234,238U, radium isotopes226,228Ra and radon222Rn were determined with the use different nuclear spectrometry techniques. The determination of uranium isotopes was carried out with the use of alpha spectrometry. The measurements of radium and radon activity concentration in water were performed with the use of a liquid scintillation technique. Additionally, rocks surrounding the intakes were examined with gamma spectrometry. All water samples showed uranium concentration above Minimum Detectable Activity (MDA), with the highest total uranium (234U +238U) activity concentration equal to 149.2±6 mBq/L. Conversely, all samples showed radium isotopes activity concentrations below MDA. Radon activity concentration was within the range from 2.91±0.36 to 21.21±1.10 Bq/L, hence these waters can be classified as low-radon waters. Gamma natural background of the rocks surrounding the water sampling sites was found on the same levels as other volcanic rocks of Italy

    Characteristics of natural radioactivity at the Reiche Zeche mine, Germany

    Get PDF
    Determination of the natural radiation background in underground localizations is necessary to describe them for possible use not only for physics experiments. The characteristics of natural radioactivity at the Reiche Zeche mine is presented and contains results from in-situ measurements, radon concentration in air, and = laboratory analyses of water and rock samples from the investigated localization. The measurements were performed in the Research and Education Mine “Reiche Zeche”, Germany at the depth of 150 m (410 m w.e.)

    Lead shielding efficiency from the gamma background measurements in the salt cavern of the Polkowice–Sieroszowice copper mine

    Get PDF
    The studies of lead shielding efficiency from the gamma background measurements were performed in the salt cavern of the copper mine - a site considered for an underground laboratory. Within the energy range of 50–2700 keV, the measured gamma-ray count rates normalized to the mass of the high-purity detectors germanium crystal are 5.93 and 6.32 s−1kg−1 for the used low-background and portable spectrometers, respectively. The gamma-ray flux of 0.124 (2) cm−2s−1 connected with the natural radioisotopes was observed by the portable HPGe, including 0.026 (1) cm−2s−1 contribution of radon decay products, whereas the photon flux at the spectrum continuum was 0.18 (5) cm−2s−1

    National comparison of methods for determination of radon in water

    Get PDF
    The article describes three interlaboratory experiments concerning 222Rn determination in water samples. The fi rst two experiments were carried out with the use of artifi cial radon waters prepared by the Laboratory of Radiometric Expertise (LER), Institute of Nuclear Physics, Polish Academy of Sciences in Kraków in 2014 and 2018. The third experiment was performed using natural environment waters collected in the vicinity of the former uranium mine in Kowary in 2016. Most of the institutions performing radon in water measurements in Poland were gathered in the Polish Radon Centre Network, and they participated in the experiments. The goal of these exercises was to evaluate different measurement techniques used routinely in Polish laboratories and the laboratories’ profi ciency of radon in water measurements. In the experiment performed in 2018, the reference values of 222Rn concentration in water were calculated based on the method developed at LER. The participants’ results appeared to be worse for low radon concentration than for high radon concentrations. The conclusions drawn on that base indicated the weaknesses of the used methods and probably the sampling. The interlaboratory experiments, in term, can help to improve the participants’ skills and reliability of their results
    corecore