51 research outputs found

    10C continued: A deeper radio survey at 15.7 GHz

    Get PDF
    We present deep 15.7-GHz observations made with the Arcminute Microkelvin Imager Large Array in two fields previously observed as part of the Tenth Cambridge (10C) survey. These observations allow the source counts to be calculated down to 0.1 mJy, a factor of five deeper than achieved by the 10C survey. The new source counts are consistent with the extrapolated fit to the 10C source count, and display no evidence for either steepening or flattening of the counts. There is thus no evidence for the emergence of a significant new population of sources (e.g. starforming) at 15.7 GHz flux densities above 0.1 mJy, the flux density level at which we expect starforming galaxies to begin to contribute. Comparisons with the de Zotti et al. model and the SKADS Simulated Sky show that they both underestimate the observed number of sources by a factor of two at this flux density level. We suggest that this is due to the flat-spectrum cores of radio galaxies contributing more significantly to the counts than predicted by the models.We thank the staff of the Mullard Radio Astronomy Observatory for maintaining and operating AMI. IHW and CR acknowledge Science and Technology Facilities Council studentships. IHW acknowledges support from the Square Kilometre Array South Africa project and the South African National Research Foundation. This research has made use of NASA’s Astrophysics Data System. We thank the referee for their careful reading of this manuscript.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stv296

    Research note: Describing average illuminance for P-class roads

    Get PDF
    Design criteria for lighting in subsidiary roads usually include a minimum average horizontal illuminance, widely assumed to be the arithmetic mean illuminance. Analyses of the illuminance distributions over thirty road sections shows that the distributions are not normal and hence the median is more appropriate than the arithmetic mean as a measure of central tendency: the medians are significantly lower than the arithmetic means but the two are highly correlated. Design recommendations should state whether it is the arithmetic mean or median and not just the ‘average’ that is required

    Road lighting research for drivers and pedestrians: The basis of luminance and illuminance recommendations

    Get PDF
    This article discusses quantitative recommendations for road lighting as given in guidelines and standards, primarily, the amount of light. The discussion is framed according to the type of road user, the driver and the pedestrian, these being the user groups associated with major and minor roads, respectively. Presented first is a brief history of road lighting standards, from early to current versions, and, where known, the basis of these standards. Recommendations for the amount of light do not appear to be well-founded in robust empirical evidence, or at least do not tend to reveal the nature of any evidence. This suggests a need to reconsider recommended light levels, a need reinforced by recent developments in the science and technology of lighting and of lighting research. To enable improved recommendations, there is a need for further evidence of the effects of changes in lighting: This article therefore discusses the findings of investigations, which might be considered when developing new standards

    The association between correlated colour temperature and scotopic/photopic ratio

    Get PDF
    The S/P ratio is a design parameter that may be considered in road lighting. This article compares the S/P ratios and CCTs of the 297 light source spectra identified in IES TM-30-15 to test the assumption that higher S/P ratios demand higher CCTs. The results suggest that, for a given lamp type, there is a strong association between S/P ratio and CCT, and hence that for a given CCT only a small variation in S/P ratio is available. However, the results also suggest that a larger variation in S/P ratio is possible if the lighting designer is able to consider a change in lamp type

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    From benzos to berries: treatment offered at an Aboriginal youth solvent abuse treatment centre relays the importance of culture.

    Get PDF
    First Nations and Inuit youth who abuse solvents are one of the most highly stigmatized substance-abusing groups in Canada. Drawing on a residential treatment response that is grounded in a culture-based model of resiliency, this article discusses the cultural implications for psychiatry's individualized approach to treating mental disorders. A systematic review of articles published in The Canadian Journal of Psychiatry during the past decade, augmented with a review of Canadian and international literature, revealed a gap in understanding and practice between Western psychiatric disorder-based and Aboriginal culture-based approaches to treatment and healing from substance abuse and mental disorders. Differing conceptualizations of mental health and substance abuse are discussed from Western psychiatric and Aboriginal worldviews, with a focus on connection to self, community, and political context. Applying an Aboriginal method of knowledge translation-storytelling-experiences from front-line workers in a youth solvent abuse treatment centre relay the difficulties with applying Western responses to Aboriginal healing. This lends to a discussion of how psychiatry can capitalize on the growing debate regarding the role of culture in the treatment of Aboriginal youth who abuse solvents. There is significant need for culturally competent psychiatric research specific to diagnosing and treating First Nations and Inuit youth who abuse substances, including solvents. Such understanding for front-line psychiatrists is necessary to improve practice. A health promotion perspective may be a valuable beginning point for attaining this understanding, as it situates psychiatry's approach to treating mental disorders within the etiology for Aboriginal Peoples

    Gastrointestinal-Sparing Effects of Novel NSAIDs in Rats with Compromised Mucosal Defence

    Get PDF
    Nonsteroidal anti-inflammatory drugs are among the most commonly used prescription and over-the-counter medications, but they often produce significant gastrointestinal ulceration and bleeding, particularly in elderly patients and patients with certain co-morbidities. Novel anti-inflammatory drugs are seldom tested in animal models that mimic the high risk human users, leading to an underestimate of the true toxicity of the drugs. In the present study we examined the effects of two novel NSAIDs and two commonly used NSAIDs in models in which mucosal defence was expected to be impaired. Naproxen, celecoxib, ATB-346 (a hydrogen sulfide- and naproxen-releasing compound) and NCX 429 (a nitric oxide- and naproxen-releasing compound) were evaluated in healthy, arthritic, obese, and hypertensive rats and in rats of advanced age (19 months) and rats co-administered low-dose aspirin and/or omeprazole. In all models except hypertension, greater gastric and/or intestinal damage was observed when naproxen was administered in these models than in healthy rats. Celecoxib-induced damage was significantly increased when co-administered with low-dose aspirin and/or omeprazole. In contrast, ATB-346 and NCX 429, when tested at doses that were as effective as naproxen and celecoxib in reducing inflammation and inhibiting cyclooxygenase activity, did not produce significant gastric or intestinal damage in any of the models. These results demonstrate that animal models of human co-morbidities display the same increased susceptibility to NSAID-induced gastrointestinal damage as observed in humans. Moreover, two novel NSAIDs that release mediators of mucosal defence (hydrogen sulfide and nitric oxide) do not induce significant gastrointestinal damage in these models of impaired mucosal defence

    Future Science Prospects for AMI

    Get PDF
    The Arcminute Microkelvin Imager (AMI) is a telescope specifically designed for high sensitivity measurements of low-surface-brightness features at cm-wavelength and has unique, important capabilities. It consists of two interferometer arrays operating over 13.5-18 GHz that image structures on scales of 0.5-10 arcmin with very low systematics. The Small Array (AMI-SA; ten 3.7-m antennas) couples very well to Sunyaev-Zel'dovich features from galaxy clusters and to many Galactic features. The Large Array (AMI-LA; eight 13-m antennas) has a collecting area ten times that of the AMI-SA and longer baselines, crucially allowing the removal of the effects of confusing radio point sources from regions of low surface-brightness, extended emission. Moreover AMI provides fast, deep object surveying and allows monitoring of large numbers of objects. In this White Paper we review the new science - both Galactic and extragalactic - already achieved with AMI and outline the prospects for much more

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    A new direction for general lighting practice

    No full text
    corecore