449 research outputs found
Bernoulli potential in type-I and weak type-II superconductors: III. Electrostatic potential above the vortex lattice
The electrostatic potential above the Abrikosov vortex lattice, discussed
earlier by Blatter {\em et al.} {[}PRL {\bf 77}, 566 (1996){]}, is evaluated
within the Ginzburg-Landau theory. Unlike previous studies we include the
surface dipole. Close to the critical temperature, the surface dipole reduces
the electrostatic potential to values below a sensitivity of recent sensors. At
low temperatures the surface dipole is less effective and the electrostatic
potential remains observable as predicted earlier.Comment: 8 pages 5 figure
On Electric Fields in Low Temperature Superconductors
The manifestly Lorentz covariant Landau-Ginzburg equations coupled to
Maxwell's equations are considered as a possible framework for the effective
description of the interactions between low temperature superconductors and
magnetic as well as electric fields. A specific experimental set-up, involving
a nanoscopic superconductor and only static applied fields whose geometry is
crucial however, is described, which should allow to confirm or invalidate the
covariant model through the determination of the temperature dependency of the
critical magnetic-electric field phase diagram and the identification of some
distinctive features it should display.Comment: 14 pages (Latex) + 2 postscript figure
Tunneling conductance of graphene ferromagnet-insulator-superconductor junctions
We study the transport properties of a graphene ferromagnet-insulator
superconductor (FIS) junction within the Blonder-Tinkham-Klapwijk formalism by
solving spin-polarized Dirac-Bogoliubov-de-Gennes equation. We find that the
retro and specular Andreev reflections in the graphene FIS junction are
drastically modified in the presence of exchange interaction and that the
spin-polarization () of tunneling current can be tuned from the positive
to negative value by bias voltage (). In the thin-barrier limit, the
conductance of a graphene FIS junction oscillates as a function of barrier
strength . Both the amplitude and phase of the conductance oscillation
varies with the exchange energy . For (Fermi energy), the
amplitude of oscillation decreases with . For ,
the amplitude of oscillation increases with , where
( is the applied electrostatic potential on
the superconducting segment of the junction). For , the
amplitude of oscillation decreases with again. Interestingly, a
universal phase difference of in exists between the
curves for and . Finally, we find that the transitions
between retro and specular Andreev reflections occur at and
, and hence the singular behavior of the conductance near
these bias voltages results from the difference in transport properties between
specular and retro Andreev reflections.Comment: Accepted for publication in Physical Review
A Note on Einstein Sasaki Metrics in D \ge 7
In this paper, we obtain new non-singular Einstein-Sasaki spaces in
dimensions D\ge 7. The local construction involves taking a circle bundle over
a (D-1)-dimensional Einstein-Kahler metric that is itself constructed as a
complex line bundle over a product of Einstein-Kahler spaces. In general the
resulting Einstein-Sasaki spaces are singular, but if parameters in the local
solutions satisfy appropriate rationality conditions, the metrics extend
smoothly onto complete and non-singular compact manifolds.Comment: Latex, 13 page
Supersymmetric AdS_3 solutions of type IIB supergravity
For every positively curved Kahler-Einstein manifold in four dimensions we
construct an infinite family of supersymmetric solutions of type IIB
supergravity. The solutions are warped products of AdS_3 with a compact
seven-dimensional manifold and have non-vanishing five-form flux. Via the
AdS/CFT correspondence, the solutions are dual to two-dimensional conformal
field theories with (2,0) supersymmetry. The corresponding central charges are
rational numbers.Comment: Dedicated to Rafael Sorkin in celebration of his 60th birthday; 5
pages, latex. v2, typos corrected, to appear in PR
M-Theory solutions with AdS factors
Solutions of D=7 maximal gauged supergravity are constructed with metrics
that are a product of a n-dimensional anti-de Sitter (AdS) space, with
n=2,3,4,5, and certain Einstein manifolds. The gauge fields have the same form
as in the recently constructed solutions describing the near-horizon limits of
M5-branes wrapping supersymmetric cycles. The new solutions do not preserve any
supersymmetry and can be uplifted to obtain new solutions of D=11 supergravity,
which are warped and twisted products of the D=7 metric with a squashed
four-sphere. Some aspects of the stability of the solutions are discussed.Comment: 30 pages. References adde
Non-Trivial Vacua in Higher-Derivative Gravitation
A discussion of an extended class of higher-derivative classical theories of
gravity is presented. A procedure is given for exhibiting the new propagating
degrees of freedom, at the full non-linear level, by transforming the
higher-derivative action to a canonical second-order form. For general
fourth-order theories, described by actions which are general functions of the
scalar curvature, the Ricci tensor and the full Riemann tensor, it is shown
that the higher-derivative theories may have multiple stable vacua. The vacua
are shown to be, in general, non-trivial, corresponding to deSitter or
anti-deSitter solutions of the original theory. It is also shown that around
any vacuum the elementary excitations remain the massless graviton, a massive
scalar field and a massive ghost-like spin-two field. The analysis is extended
to actions which are arbitrary functions of terms of the form ,
and it is shown that such theories also have a non-trivial vacuum structure.Comment: 25 pages, LaTeX2e with AMS-LaTeX 1.2, 7 eps figure
Statistical properties of extragalactic sources in the New Extragalactic WMAP Point Source (NEWPS) catalogue
We present results on spectral index distributions, number counts, redshift
distribution and other general statistical properties of extragalactic point
sources in the NEWPS5 sample L\'opez-Caniego et al. (2007). The flux
calibrations at all the WMAP channels have been reassessed both by comparison
with ground based observations and through estimates of the effective beam
areas. The two methods yield consistent statistical correction factors. A
search of the NED has yielded optical identifications for 89% of sources in the
complete sub-sample of 252 sources with S/N>5 and S>1.1 Jy at 23 GHz; 5 sources
turned out to be Galactic and were removed. The NED also yielded redshifts for
92% of the extragalactic sources at |b|>10deg. Their distribution was compared
with model predictions; the agreement is generally good but a possible
discrepancy is noted. Using the 5 GHz fluxes from the GB6 or PMN surveys, we
find that 76% of the 191 extragalactic sources with S_23GHz>1.3,Jy can be
classified as flat-spectrum sources between 5 and 23 GHz. A spectral steepening
is observed at higher frequencies: only 59% of our sources are still
flat-spectrum sources between 23 and 61 GHz and the average spectral indexes
steepen from = 0.01\pm 0.03 to = 0.37\pm 0.03. We
think, however, that the difference may be due to a selection effect. The
source number counts have a close to Euclidean slope and are in good agreement
with the predictions of the cosmological evolution model by De Zotti et al.
(2005). The observed spectral index distributions were exploited to get
model-independent extrapolations of counts to higher frequencies. The risks of
such operations are discussed and reasons of discrepancies with other recent
estimates are clarified.Comment: 8 pages, 4 figures. Accepted for publication in MNRA
- …