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The manifestly Lorentz covariant Landau-Ginzburg equations coupled to Maxwell’s equa-
tions are considered as a possible framework for the effective description of the interactions
between low temperature superconductors and magnetic as well as electric fields. A spe-
cific experimental set-up, involving a nanoscopic superconductor and only static applied
fields whose geometry is crucial however, is described, which should allow to confirm
or invalidate the covariant model through the determination of the temperature depen-
dency of the critical magnetic-electric field phase diagram and the identification of some
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1. Introduction. It is a widely held belief that (low Tc) superconductors cannot sustain
electric fields in static configurations. The argument[1] is directly based on the first of the
London equations,

∂

∂t

(

Λ ~J
)

= ~E , ~∂ ×
(

Λ ~J
)

= − ~B , (1)

where Λ is a phenomenological parameter proper to the superconducting material, ~J is the
supercurrent density, and ~E, ~B are the electric and magnetic fields, respectively. Indeed, given
that relation as well as the property of infinite conductivity, any nonvanishing electric field
within the sample must set into motion a dissipationless supercurrent, hence a displacement
of charges which very rapidly leads to an exact screening of any such electric field, certainly
for time independent configurations (the case of stationary configurations with externally
sustained supercurrents in the presence of magnetic vortices in type II superconductors is a
different matter, see for example Refs.[2, 3, 4]).

However, such a situation raises a series of puzzles of varying degrees of concern. First,
it is physically inconceivable that an applied electric field would discontinuously drop to zero
from its external value when crossing the surface of a superconducting sample. There ought
to exist some skin effect with a characteristic nonvanishing penetration depth however small.
Nevertheless, none of the parameters appearing in the London equations provides for such an
electric penetration length. Moreover, in the above picture for the screening of electric fields,
mention is made of an electromagnetic charge density which also is not accounted for in the
London equations, nor more generally in the Landau-Ginzburg (LG) equations (see below).

Another concern at a more formal level is the fact that the coupling of the London
and LG equations to the electromagnetic fields is not spacetime covariant. Indeed, under
Lorentz boosts, the supercurrent density ~J ought to transform as the space components of
a 4-vector whose time component would then play the role of the aforementioned missing
charge density, while the electric ~E and magnetic ~B fields transform as components of the
two index antisymmetric field strength tensor Fµν . To illustrate this point more vividly
perhaps, consider a flat infinite superconducting slab submitted to an external homogeneous
magnetic field lying parallel to its surface. In such a case, the magnetic field will only partially
penetrate the sample, with a characteristic penetration length related to the parameter Λ
above[1]. Imagine now performing a Lorentz boost in a direction both parallel to the surface of
the slab and perpendicular to the applied magnetic field. According to the Lorentz covariance
of Maxwell’s equations, in the boosted frame there appears now an electric field perpendicular
to the surface of the sample, also within the volume of the superconductor where the magnetic

field in the initial frame is nonvanishing. Thus Lorentz covariance requires the possibility of
electric fields on the same footing as magnetic ones within superconductors, with an electric
penetration length equal to the familiar magnetic one. Nevertheless, the existence of such
electric fields within superconductors is incompatible with the London equations.

One may take issue with the above covariance argument, since the superconducting
sample itself defines a preferred frame, thereby insisting that the physics should be described
only with respect to that specific rest-frame. Even though that frame is obviously distin-
guished, the coupling of the London and LG equations to the electromagnetic fields should
be consistent with the covariance properties of Maxwell’s equations, even within that frame.
In addition, one would also like to have available a manifestly covariant framework in which
to study the interactions of electromagnetic fields and moving superconducting samples, an

1



issue which the usual London and LG equations are unable to address, and which is certainly
accounted for to anyone’s satisfaction in the description of electromagnetic interactions with
ordinary conductors. It remains true nevertheless that some physical characterizations of
superconductors can be defined with respect only to the rest-frame, such as for example
the frame dependent notion of the free energy whose value determines the occurrence of the
superconducting-normal phase transition only when evaluated in the rest-frame.

Note that any spacetime covariant extension of the usual London and LG equations
entails a time dependent LG (TDLG) equation in which space and time variations are on
the same footing. Namely, a covariant TDLG equation is necessarily of second-order in time
derivatives as it is in space derivatives, in sharp contrast with the usual non covariant first-
order TDLG equations encountered in the literature[1]. In particular, in a covariant setting,
the time scale associated to time dependent fluctuations is then naturally set by the time it
takes light to travel the distance of some mean value of the penetration and coherence lengths.
In contradistinction for first-order TDLG equations, this time scale is specified in terms of
an additional parameter, the relaxation constant[1]. As a matter of fact, the latter quantity
involves Boltzmann’s constant, showing that the usual TDLG equations apply rather to the
time dependency encured through thermodynamic fluctuations in the superconducting order
parameter. As such, these TDLG equations do not provide a framework in which to study the
intrinsically genuine time dependent dynamics of superconductors coupled to time varying
electromagnetic fields, in the absence of thermodynamic fluctuations. A covariant extension
of the London and LG equations would also provide such a dynamic framework, of relevance
for instance to the dynamics of ensembles of magnetic vortices interacting among one another
and with their electromagnetic environment.

A manifestly covariant extension of the LG equation which immediately comes to one’s
mind is of course the so-called U(1) Higgs model of particle physics, whose construction itself
was motivated by the BCS and LG theories in the late 50’s. Indeed, as an effective theory for
superconductivity, this model coincides with the original LG formulation for stationnary con-
figurations, and readily provides[5] a description of all the remarkable quantum phenomena
of superconductivity. It may thus appear somewhat surprising that the covariant formulation
has not been used to further explore superconducting phenomena possibly lying beyond the
boundaries of the usual London and LG equations. The purpose of this Letter is to suggest
examples of investigations along such lines.

After some considerations on the covariant London and LG equations presented in the
next section, section 3 identifies a specific set-up which should enable to establish experi-
mentally whether the covariant, rather than the usual noncovariant approach is relevant to
superconducting phenomena in the presence of electric fields. What appears to us to be quite
a remarkable circumstance is that this experimental confirmation of the covariant model
should prove to be possible already using only a static, time independent configuration of
external fields, through the observation of the superconducting-normal phase transition and
the determination of the phase diagram in the (B,E) plane for a specific geometry of the
applied fields.

2. The covariant LG equations. As mentioned already, the considered model, of appli-
cation only to low temperature superconductors, is that of a U(1) gauge invariant coupling
to the electromagnetic interactions of a complex scalar field ψ of charge q = −2e < 0 (the
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Cooper pair charge) and with self-interactions determined through the usual LG potential
(|ψ|2 − 1)2 properly normalized. The order parameter ψ is normalized to the square-root of
the Cooper pair density in the bulk in the absence of any electromagnetic field (see Ref.[6]
for some further details). Rather than listing all the relevant equations in terms of the phys-
ical quantities, let us already use the following choice of units. Space and time coordinates,
namely ~x and the combination x0 = ct with c being the speed of light in vacuum, are mea-
sured in units of the penetration length λ(T ). Similarly, magnetic ~B and electric ~E/c fields
are measured in units of Φ0/(2πλ

2(T )), where Φ0 = 2πh̄/|q| is the usual quantum of flux.
Note that these units are temperature dependent, since the penetration length λ(T ) is, with a

dependency we shall model[1] through λ(T ) = λ(0)
(

1 − (T/Tc)
4
)−1/2

, Tc being of course the
critical temperature. Finally, the order parameter ψ is parametrized according to ψ = feiθ,
with f real and f2 thus measuring the relative Cooper pair density. In terms of these units,
space and time coordinates are denoted ~u and τ , and the magnetic and electric fields ~b and
~e, respectively. Finally, let us also introduce the quantities,

j0 =
q

h̄

λ3(T )

f2
µ0 cρem , ~j =

q

h̄

λ3(T )

f2
µ0

~Jem , (2)

where µ0 is the usual vacuum magnetic permitivity, and (cρem, ~Jem) are the superconducting
electromagnetic charge and current densities (constructed in terms of ψ), indeed defining a
4-vector under Lorentz transformations. Note that these relations show that (f2j0, f2~j) is in
fact proportional to this electromagnetic 4-supercurrent, which must be locally conserved.

The latter remark is also confirmed by the inhomogeneous Maxwell equations (all space
derivatives are of course with respect to ~u),

~∂ · ~e = −f2 j0 , ~∂ ×~b− ∂τ~e = −f2~j , (3)

which indeed, as is usual, imply the local conservation property ∂τ

(

f2j0
)

+ ~∂ ·
(

f2~j
)

= 0.

The remaining electromagnetic equations of motion are given by,

∂τ
~j + ~∂j0 = −~e , ~∂ ×~j = ~b , (4)

which are recognized as the appropriate covariant extension of the London equations in (1).
Note that only the first London equation is modified by the inclusion of a contribution of the
supercharge density, as was indeed required, while the second London equation, essential to
the Meissner effect, retains its original form. The homogeneous Maxwell equations,

~∂ × ~e+ ∂τ
~b = ~0 , ~∂ ·~b = 0 , (5)

follow from the covariant London equations (4) (as they do also from the noncovariant ones
in (1)).

The equations of motion for the order parameter ψ are given, on the one hand, by the
covariant LG equation

[

~∂2 − ∂2
τ

]

f =
[

~j2 − j0
2
]

f − κ2(1 − f2)f , (6)

where the LG parameter κ = λ(T )/ξ(T )—ξ(T ) being the coherence length—is essentially
temperature independent[1], and on the other hand, by the following conditions for the quan-
tum phase θ,

∂τθ = −j0 + ϕ , ~∂θ = ~j − ~a . (7)
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In these latter relations, ϕ and ~a are the scalar and vector gauge potentials defined such that

~e = −~∂ϕ− ∂τ~a , ~b = ~∂ × ~a . (8)

Finally, these equations are subject to boundary conditions requiring vanishing values for
those components of the vectors ~∂f and ~j which are perpendicular to the surfaces of the
superconducting sample in contact with an insulating material.

The advantage of using this representation of the system is that the number of gauge
dependent variables is kept to a minimum[6]. Only the quantities θ, ϕ and ~a are defined up
to the following gauge transformations,

θ′ = θ + χ , ϕ′ = ϕ+ ∂τχ , ~a′ = ~a− ~∂χ , (9)

χ(~u, τ) being an arbitrary function, while the absolute sign of f may also be subject to gauge
transformations[7].

In fact, this decoupling of gauge variant and gauge invariant quantities may be ren-
dered complete when substituting the covariant London equations (4) into the inhomogeneous
Maxwell equations (3). In addition to the covariant LG equation (6), one then finds for the
(j0,~j) 4-supercurrent,

[

~∂2 − ∂2
τ

]

j0 = f2j0 − ∂τ

[

∂τ j
0 + ~∂ ·~j

]

,
[

~∂2 − ∂2
τ

]

~j = f2~j + ~∂
[

∂τ j
0 + ~∂ ·~j

]

. (10)

Any solution to this set of three coupled equations for j0, ~j and f then leads to specific values
for~b and ~e through the covariant London equations (4), and in turn, once the gauge potentials
ϕ and ~a related to these fields determined up to the gauge transformations parametrized by
χ, the corresponding solution for the quantum phase θ is also finally obtained from (7)[7].

Although nonlinear, the equations (6) and (10) also establish that these covariant LG
equation admit progressive wave solutions with covariant dispersion relations in a linear
regime. As a matter of fact, the phase and group velocities for variations in the 4-supercurrent
and the order parameter f are different, unless the LG parameter κ takes the same critical
value κc = 1/

√
2 as the one which is so crucial to the understanding of the stability and

interaction properties of magnetic vortices. Indeed, for a fluctuation of wave number k (in
units of 1/|~u|) around the vacuum solution (j0 = 0,~j = ~0, f = 1), the group velocities are,
respectively,

vj =
k√

k2 + 1
, vf =

k√
k2 + 2κ2

, (11)

thus showing that when κ > κc (resp. κ < κc), waves in the 4-supercurrent will overtake (resp.
be overtaken by) those in the order parameter f . In other words, within the superconductor,
fluctuations in the electromagnetic fields will propagate more rapidly (resp. slowly) than
those in the order parameter, in accordance with the relative magnetic and superconducting
rigidities that the parameters λ(T ) and ξ(T ) characterize.

Clearly, such properties are totally different in the case of the usual noncovariant first-
order TDLG equation, in which time scales are then normalized with respect to the relaxation
parameter, which itself is temperature dependent. The ensuing dispersion relations are then
linear in frequency, implying that the group velocities of fluctuations in the supercurrent ~j
and in the order parameter f are then also identical, independently of the value for κ. Such
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differences between the covariant and noncovariant frameworks must lead to distinct physical
properties in the case of time dependent configurations in ultra-high frequency regimes, ν ∼
c/λ(T ), c/ξ(T ), an issue which, however, is beyond the scope of this work.

To conclude this general discussion, let us also give the expression for the free energy
E of the system in the covariant form,

(

λ3(T )

2µ0

(

Φ0

2πλ2(T )

)2
)−1

E =

∫

(∞)
d3~u

{

[~e− ~eext]
2 +

[

~b−~bext

]2
}

+

+

∫

Ω
d3~u

{

(∂τf)2 +
(

~∂f
)2

+ f2
(

j0
2
+~j2

)

+
1

2
κ2
(

1 − f2
)2

− 1

2
κ2
}

, (12)

where the normalization factor related to our choice of units is displayed together with E in
the l.h.s., ~eext and ~bext are externally applied electric and magnetic fields, respectively, and
Ω stands for the volume of the superconducting sample.

The same expression is also of application to the noncovariant model, in which case
one has j0 = 0 and ~e = ~0 within the superconductor, and the quadratic term in ∂τf is to
be replaced by a linear term while the time coordinate is then also measured in units of the
relaxation parameter for the TDLG equation. The term in [~e− ~eext]

2 measures the energy
required to expulse the electric field from the superconductor. In the noncovariant case,
and in accordance with the first London equation, we shall thus assume that the associated
penetration depth is essentially vanishing for all practical purposes. For physics reasons,
such an approximation cannot be very reliable when it comes to nanoscopic superconductors,
but we shall use it as a working hypothesis anyway. Note that the free energy E is defined
here in such a way that it vanishes at the superconducting-normal phase transition. And
as a last remark, clearly, in the case of stationary configurations and in the absence of any
electric fields, the equations of both approaches coincide with the usual noncovariant time
independent LG equations.

3. Characterizing the phase transition. In order to identify a specific geometry of
applied fields which could help discriminate experimentally between the two approaches al-
ready in a static configuration, consider again the situation of the flat infinite slab of the
Introduction, this time subjected not only to the homogeneous magnetic field parallel to its
surface, but also to an homogeneous electric field applied perpendicularly to its surface (an
electric field parallel to the slab does not induce a supercharge distribution j0, hence neither
a feature distinctive from the noncovariant model). The slab is taken to be of thickness 2a,
while the external electric field ~eext is aligned along the x axis, and the external magnetic
field ~bext along the y axis, with components eext and bext, respectively (the origin of this co-
ordinate system is of course positioned in the center of the slab). For this specific geometry,
the expulsion of the magnetic field is achieved through an induced supercurrent ~j circulating
along the z axis, also parallel to the slab, while that of the electric field is achieved through
the appearance of a nonvanishing supercharge density j0, an occurrence which simply cannot
arise in the noncovariant approach. Both these effects imply a deviation from its canonical
value of unity for the order parameter f . In view of the symmetries of the problem, both
j0(u) and jz(u) are odd functions of the normalized u = x/λ(T ) coordinate along the x axis,
while f(u) is even.
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Given the equations and the different conditions imposed on these quantities at the
boundaries u = ±ua ≡ ±a/λ(T ), it proves possible as well as useful to express both j0(u)
and jz(u) in terms of a single function j(u)

j0(u) = −eextj(u) , jz(u) = −bextj(u) , (13)

so that one has for the electric and magnetic fields within the sample,

e(u) = eext
d

du
j(u) , b(u) = bext

d

du
j(u) , (14)

thus showing once again that Lorentz covariance implies that the penetration lengths for both
types of fields are identical. The set of equations to be considered then reduces to,

d2

du2
j(u) = f2(u)j(u) ,

d2

du2
f(u) =

(

b2ext − e2ext

)

j2(u)f(u) − κ2
(

1 − f2(u)
)

f(u) , (15)

subject to the boundary conditions

d

du
j(u)|u=±ua

= 1 ,
d

du
f(u)|u=±ua

= 0 . (16)

Note already the subtle interplay between the magnetic and electric field contributions to the
LG equation for f(u), which leads to values larger than unity for f(u) in the electric regime
e2ext > b2ext, while, as is usual, f(u) remains less than unity in the magnetic regime b2ext > e2ext.
The existence of these two regimes is a direct and distinctive consequence of manifest Lorentz
covariance; only the magnetic one arises in the noncovariant approach (see below). Note also
that in view of these equations, the solutions for j(u) and f(u) are necessarily functions of
the specific combination (b2ext−e2ext) only, indeed justifying this notion of electric or magnetic
regimes.

Up to the normalisation factor displayed in (12) as well as the infinite surface of the
slab, the free energy E of configurations obeying these equations is simply given by

E = 2ua

{[

1 − 1

ua
j(ua)

]

(

b2ext + e2ext

)

− 1

ua

∫ ua

0
du

[

(

b2ext − e2ext

)

j2f2 +
1

2
κ2f4

]}

. (17)

Consequently, the curve in the (b, e) phase diagram which characterizes the superconducting-
normal phase transition obeys the following equation in the covariant approach,

b2 + e2 =
1

[

1 − 1
ua
j(ua)

]

1

ua

∫ ua

0
du

[

(

b2 − e2
)

j2f2 +
1

2
κ2f4

]

. (18)

The noteworthy property of this relation is that the l.h.s. involves only the combination
(b2 + e2), while the r.h.s. is only a function of the combination (b2 − e2) of the external fields
(since the solutions j(u) and f(u) also share that property).

Before addressing the specific consequences of this equation for the (b, e) phase diagram,
let us consider the corresponding expressions in the noncovariant approach. In that case, one
has of course j0(u) = 0 (which also implies e(u) = 0 within the superconductor, as follows
from the first London equation) as well as jz(u) = −bextj(u). The equations then remain as
given in (15), including the boundary conditions, with the only but important difference that
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the factor (b2ext−e2ext) appearing in the LG equation is of course replaced by b2ext only. Hence,
the noncovariant LG equations only admit the magnetic regime of solutions. Note that in
this case, the solutions for j(u) and f(u) are then also functions of the b2ext external field only.
Consideration of the expression for the free energy then leads to the following condition of
criticality in the (b, e) phase diagram in the noncovariant case,

b2 +
1

[

1 − 1
ua
j(ua)

]e2 =
1

[

1 − 1
ua
j(ua)

]

1

ua

∫ ua

0
du

[

b2j2f2 +
1

2
κ2f4

]

. (19)

In spite of the apparent similarity with (18), recall however that the r.h.s. of this expression is
a function of b2 only, while the l.h.s. is no longer the simple combination b2+e2 characteristic
of a circle since the coefficient multiplying the term in e2 is also a function of b2.

Note that the conditions (18) and (19) coincide in the limit that no electric field is
applied, e = 0, as they should of course. Moreover in the absence of any magnetic field,
b = 0, (19) implies the existence of a nonvanishing critical electric field, e0 = κ/

√
2, or

in physical units E0(T )/c = (λ(0)/λ(T ))2B∞
c (0), B∞

c (0) = Φ0/(2
√

2πλ(0)ξ(0)) being the
usual thermodynamic critical magnetic field in the bulk at zero temperature. Clearly, the
existence of such a critical electric field even in the noncovariant approach is consequence
of our definition for the free energy in (12) which accounts for the expulsed electric energy
density through the term in [~e− ~eext]

2. In particular, this critical electric field E0(T ) vanishes
at the critical temperature Tc, as does the critical magnetic field B0(T ) in the absence of any
electric field, e = 0.

4. The (B,E) phase diagram. A complete unravelling of the consequences of the criticality
conditions (18) and (19) requires of course a numerical approach. Nevertheless, an analysis
in some limiting situations already suffices to gain insight into the differences implied by the
two models. An obvious such situation is obtained in the macroscopic limit, namely when the
slab half-thickness a is much larger than both the penetration and coherence lengths. For all
practical purposes, the function j(u) then essentially vanishes whereas the order parameter
retains its canonical value of unity within most of the volume of the sample, except for a
small region close to the surface. Hence in the above expressions of criticality, in the limit
that a→ ∞, only the contribution in κ2f4/2 tends to dominate, leading in both cases to the
condition,

b2 + e2 ≃ 1

2
κ2 , a≫ λ(T ), ξ(T ) . (20)

Since this will prove to be useful, let us normalize the measurement of these fields to the
value b0 of the critical magnetic field in the absence of any electric field (in the macroscopic
limit, we thus have b0 = κ/

√
2). In terms of the physical quantities, one then obtains the

following approximation to the criticality condition in the (B,E) phase diagram

(

B

B0

)2

+

(

E/c

B0

)2

≃ 1 , a≫ λ(T ), ξ(T ) . (21)

Hence in the macroscopic limit, the two models are not distinguished in their (B,E) phase
diagrams. In particular, both their critical magnetic, B0, and electric, E0, fields (in the
absence each time of the other field) reach a vanishing value at the critical temperature Tc.
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Consider now the nanoscopic limit, namely when a ≪ λ(T ), ξ(T ). In practice, this
situation may be encountered indeed for nanoscopic samples close to the critical temperature
Tc. In such a case, one may develop series expansion solutions in u for the functions j(u) and
f(u) in order to evaluate the criticality conditions (18) and (19). However, since contributions
of order b2 and e2 appear on both sides of these equations, in order to be of sufficient accuracy,
the expansion in u must at the same time include at least the first order corrections in b2

and e2 in the r.h.s. of (18) and (19) as well. For this reason, it is more relevant to consider
a weak field expansion for the solutions independently of whether ua is small or not, to be
used to compute to first order in b2 and e2 the r.h.s. of the criticality conditions above, and
then eventually take the nanoscopic limit. Note that given the result (20), critical fields are
at least of the order of κ/

√
2, so that such a weak field expansion should be warranted for

small values of the LG parameter κ, namely for type I superconductors.

After some work, one then finds that the criticality conditions (18) and (19), evaluated
to first order in b2 and e2, imply the following constraint on the physical fields in the (B,E)
phase diagram,

(

B

B0

)2

+ C

(

E/c

B0

)2

≃ 1 , (22)

where as before B0 stands for the critical magnetic field value in the absence of any electric
field, E = 0, which is in general a function of temperature and of a of course, while C is a
factor given by the following expressions,

covariant model : C =
(

1+β
1−β

)

,

noncovariant model : C =
(

ua

ua−tanh ua

) (

1
1−β

)

,

(23)

where

β =
ua

16(ua − tanhua)2
1

(κ2 − 2)2

{

8κ
√

2
tanh2 ua

tanh(κ
√

2ua)
− (3κ4 − 10κ2 + 16) tanh ua+

+(5κ4 − 22κ2 + 16) tanh3 ua + (κ2 − 2)(3κ2 − 4)
ua

cosh4 ua

}

. (24)

These expressions are valid in the weak field approximation to first order whatever
the value for a. Taking now the nanoscopic limit as well, one finds (1 − tanh(ua)/ua)

−1 =
3/u2

a

[

1 + O(u2
a)
]

and β = 1/2
[

1 + O(u2
a)
]

, leading finally to the following criticality condi-
tions in the (B,E) phase diagram in the weak field limit,

covariant model :
(

B
B0

)2
+ 3

(

E/c
B0

)2
≃ 1 , a≪ λ(T ), ξ(T ) ,

noncovariant model :
(

B
B0

)2
+ 6

(

λ(0)
a

)2
1

1−
(

T

Tc

)

4

(

E/c
B0

)2
≃ 1 , a≪ λ(T ), ξ(T ) .

(25)
Since the critical magnetic field B0 does vanish towards the critical temperature T = Tc, so
do all the critical fields B and E which are defined by either of these relations, and thus in
particular also the critical electric field E0 in the absence of any magnetic field, B = 0, as
was already remarked previously in the noncovariant case. However, by having chosen to
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normalize the measurements of these fields to B0, a very distinctive feature appears for the
covariant model when compared to the noncovariant one. Indeed, the ratio E/(cB0) always
retains a finite and nonvanishing value, whatever the critical values for B and E within
the intervals [0, B0] and [0, E0], even in the limit of the critical temperature Tc, whereas in
the noncovariant model, that same ratio E/(cB0) must vanish like

√

1 − (T/Tc)4 (given our
chosen model for λ(T )). In particular, in the weak field approximation and including the
result (20) valid for macroscopic samples, one thus derives in the covariant case the following
bounds for the critical electric field E0,

√

1 − β

1 + β
<
E0/c

B0
< 1 , (26)

with E0/(cB0) moving towards lower values within that interval when the critical temperature
Tc is approached (recall that β is also temperature dependent through ua). In the nanoscopic
limit a≪ λ(T ), ξ(T ), these same bounds reduce to

1√
3
<
E0/c

B0
< 1 . (27)

In contradistinction in the noncovariant case, the lower bound on E0/(cB0) always vanishes,
since one then finds,

√

(

1 − 1

ua
tanhua

)

(1 − β) <
E0/c

B0
< 1 , (28)

reducing in the nanoscopic limit a≪ λ(T ), ξ(T ) to

1√
6

(

a

λ(0)

)

√

1 −
(

T

Tc

)4

<
E0/c

B0
< 1 . (29)

As a matter of fact, this type of consideration may be refined further still in the covari-
ant case. Indeed, an obvious solution to the covariant LG equations is j(u) = sinhu/ cosh ua,
f(u) = 1 in the case that eext = bext, a fact which, as was remarked previously, is a dis-
tinctive feature of the covariant approach, since this solution defines precisely the boundary
between the magnetic and electric regimes of superconductivity, and as such its existence is
a direct consequence of Lorentz covariance. Hence, the critical condition (18) for the corre-
sponding fields b1 and e1 simplifies in this specific instance to the exact result, valid under
all circumstances,

b21 + e21 = 2b21 = 2e21 =
1

2
κ2 1

1 − 1
ua

tanhua
. (30)

When the weak field approximation is also warranted for the evaluation of the critical mag-
netic field B0, this result combines with those above to lead to the following bounds,

1√
2

√

1 − β <
B1

B0
=
E1/c

B0
<

1√
2
, (31)

and in the nanoscopic limit,

1

2
<
B1

B0
=
E1/c

B0
<

1√
2

, a≪ λ(T ), ξ(T ) , (32)
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whereas in the noncovariant case, one finds similarly in the nanoscopic limit

1
√

1 + 6
(

λ(0)
a

)2
1

1−
(

T

Tc

)4

<
B1

B0
=
E1/c

B0
<

1√
2

, a≪ λ(T ), ξ(T ) . (33)

Hence here again for those specific configurations such that Bext = Eext/c, the lower bound
on B1/B0 reaches a vanishing value at the critical temperature in the noncovariant case,
whereas that lower bound remains finite and is only mildly temperature dependent in the
covariant case.

The existence of such finite bounds on the values for E1/(cB1) as a function of tem-
perature in the covariant case, translates into the following nice characterization in terms of
the (B/B0, E/(cB0) phase diagram. Indeed, the limits (32) (which are more refined in (31))
imply that the phase boundary curve in that diagram must always cross the diagonal line
B = E/c within the interval of B/B0 or E/(cB0) values defined by these bounds in the co-
variant model, whatever the value for the temperature (see Fig.1). Such a property is simply
not met in the noncovariant model (see Fig.2). Similarly, the lower bounds (26) or (27) on
E0/(cB0) imply that, when approaching the critical temperature, the same phase boundary
curve at B/B0 = 0 cannot move below a specific finite value in the covariant model, while it
must necessarily do so in the noncovariant one.

As a conclusion thus, which should remain valid beyond the specific limits conside-
red here, it appears that by choosing to normalize the measurement of critical electric and
magnetic fields to the critical magnetic field in the absence of any electric field, for a given
nanoscopic sample with this specific geometry of applied fields and by approaching the critical
temperature, the (B,E) phase diagram provides the necessary distinctive features which
should enable to discriminate experimentally between the covariant and noncovariant mo-
dels, and in any case confirm or invalidate the description offered by the Lorentz covariant
LG equations. Indeed, as was remarked previously, the ordinary noncovariant framework is
not physically realistic when it comes to nanoscopic samples in the presence of electric fields,
since it ignores the partial penetration, albeit small, of the electric field into the sample’s
surface. The present analysis has concentrated on the weak field approximation, essentially
in the nanoscopic limit. Similar distinctive differences between the two models should also
exist for larger values of κ, in ways still to be investigated requiring then a detailed numerical
study which is not pursued in this Letter.

5. Numerical solutions. Here, we present the results of the numerical resolution of the
LG equations and of the criticality conditions (18) and (19) for only one situation, which is
close enough both to the discussion of the previous section and to an experimentally realistic
situation. Namely, we take the following parameter values

a

λ(0)
= 5 , κ = 0.02 . (34)

Indeed, this value for κ is typical for aluminium (Al), while tabulated values of λ(0) for
Al—λ(0) = 16 − 50 nm with Tc = 1.18 K—would imply that the slab is then a few hundred
nanometers thick, within reach of present lithographic techniques for Al on a SiO2 substrate.
Moreover, the critical magnetic field B∞

c (0) for Al is also on the order of 100 Gauss, so
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that the required electric field values for a measurement of the (B,E) phase diagram would
reach into 3 MV/m, namely 3 V/µm, certainly also a reasonable range of values for such
a nanoscopic device. Of course, compared to the infinite slab model, such a device will be
subjected to finite size corrections. Presumably, such corrections would imply that the role
played by λ(T ) and κ in our analysis would be replaced by some effective quantities whose
values would not differ to a great extent from those of Al in the bulk. Such corrections may
be assessed only once a specific device is designed.

In Fig.1 (resp. Fig.2), we present the (B/B0, E/(cB0)) phase diagram for the covariant
(resp. noncovariant) model, given the values in (34), for a series of temperatures in the
range from T = 0 to T = Tc. The general behaviour of the phase diagram as a function
of temperature is indeed the one described in the previous section. In particular in the
covariant model, and as a function of temperature, the critical electric field values E0/(cB0)
and E1/(cB0) obey the different finite lower (and upper bounds) derived from the analytical
discussion, including those given in (26) and (31) when considering the associated values for
β. In contradistinction, in the noncovariant case, the ratio E/(cB0) reaches a vanishing value
when approaching the critical temperature, while in this case as well it way be checked that
the different lower bounds (28), (29) and (33) are indeed also obeyed.

Such results, as well as the other considerations of this Letter show that it should be
possible to experimentally discriminate between the ordinary noncovariant LG equations and
the covariant ones advocated here, by determining the critical (B,E) phase diagram of a
nanoscopic superconducting sample for temperatures approaching its critical temperature.
The geometry of the applied fields is crucial for this purpose, with the external magnetic
field parallel to the sample’s surface and the external electric field perpendicular to it. By
normalizing the measurement of fields to that of the critical magnetic field in the absence
of any electric field, distinctive differences between the two approaches are best brought to
the fore, and should enable to confirm or invalidate the covariant approach. Moreover, if the
experiment should also allow for an absolute calibration of the applied fields, the comparison
between the two models may be refined still further by considering the temperature depen-
dency of the critical value for applied magnetic B and electric E/c fields of equal magnitude,
this temperature dependency being constrained to lie within a specific interval whose exis-
tence is a direct consequence of the manifest Lorentz covariance of the covariant model. We
hope to be able to report on such measurements in the future, but lithographic problems
have hindered any progress until now.
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Figure Captions

Figure 1: The phase diagram (B/B0, E/(cB0)) for the covariant LG equations with the values
(34). Shown from top to bottom are the curves associated to the following increasing tem-
perature values, T/Tc = 0, 0.8766, 0.9659, 0.9935, 0.9996. The diagonal line determines those
configurations such that Bext = Eext/c, the two vertical dot-dashed lines at B/B0 = 1/2 and
B/B0 = 1/

√
2 correspond to the lower and upper bounds (32) obeyed by the critical electric

E1/c and magnetic B1 fields of equal strength in the nanoscopic limit of the weak field appro-
ximation for the covariant LG equations, while the horizontal dashed line at E/(cB0) = 1/

√
3

corresponds to the lower bound (27) on the critical electric field E0/(cB0) in the same ap-
proximation. The existence of these finite bounds is the distinctive prediction of the covariant
model and a direct consequence of its manifest Lorentz covariance.

Figure 2: The same as in Fig.1 for the noncovariant model. In this case, the horizontal and
two vertical lines are displayed only for the purpose of comparison with the covariant model.
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