74 research outputs found

    Network Structure Explains the Impact of Attitudes on Voting Decisions

    Get PDF
    Attitudes can have a profound impact on socially relevant behaviours, such as voting. However, this effect is not uniform across situations or individuals, and it is at present difficult to predict whether attitudes will predict behaviour in any given circumstance. Using a network model, we demonstrate that (a) more strongly connected attitude networks have a stronger impact on behaviour, and (b) within any given attitude network, the most central attitude elements have the strongest impact. We test these hypotheses using data on voting and attitudes toward presidential candidates in the US presidential elections from 1980 to 2012. These analyses confirm that the predictive value of attitude networks depends almost entirely on their level of connectivity, with more central attitude elements having stronger impact. The impact of attitudes on voting behaviour can thus be reliably determined before elections take place by using network analyses.Comment: Final version published in Scientific Report

    The Gaussian graphical model in cross-sectional and time-series data

    Get PDF
    We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in 3 kinds of psychological datasets: datasets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered datasets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means---the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.Comment: Accepted pending revision in Multivariate Behavioral Researc
    • 

    corecore