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Polarization of opinions is a societal threat. It involves psychological processes as well as group dynamics,
a popular topic in statistical physics. However, the interaction between the within individual dynamics of
attitude formation and across person polarization is rarely studied. By modelling individual attitudes as
Ising networks of attitude elements, and approximating this behaviour by the cusp singularity, we developed
a fundamentally new model of social dynamics. In this hierarchical model, agents behave either discretely
or continuously depending on their attention to the issue. At the individual level, the model reproduces the
mere thought effect and resistance to persuasion. At the social level, the model implies polarization and
the persuasion paradox. We propose a new intervention for escaping polarization in bounded confidence
models of opinion dynamics.

Keywords: attitudes; polarization; persuasion; Ising model; cusp catastrophe.

1. Introduction

The polarization of opinions is an important and increasing societal problem [1, 2]. Polarization across
individuals leads to the formation of distinct camps which prevents us from reaching consensus on issues
such as health care, education and climate [3]. Individual cases of polarization, radicalization for instance,
may lead to harmful extremist behaviours [4].

Various scientific disciplines study these types of processes. Psychology studies the formation of
attitudes in individuals, while sociology and political science are concerned with the collective properties
of polarization. These collective properties have also become popular topics in statistical physics and
computer science. Over the last decades, the statistical physics of social dynamics, or sociophysics, has
become a field in itself, with many different approaches to the formal modelling and simulation of social
phenomena [5, 6].

As both the individual and collective processes are extremely complex, models of the individual tend
to ignore or greatly simplify group processes and vice versa. In statistical physics models of opinion
dynamics, for instance, individuals are often reduced to binary state systems that tend to switch to the
majority opinion in their local environment [7]. Simplifications are indeed required but a richer model
of the individual agent within models of social dynamics may provide new insights in the dynamics of
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2 H. L. J. VAN DER MAAS ET AL.

polarization. This article presents such a new model, the hierarchical Ising opinion model (HIOM), for
the integrative study of individual and collective polarization.

Specifically, we will first provide a new answer to a famous question posed by Axelrod [8]: ‘If people
tend to become more alike in their beliefs, attitudes, and behaviour when they interact, why do not all such
differences eventually disappear?’ There are different ways to model this lack of consensus in dynamic
opinion models. Generally, this is modelled in terms of limited interaction between agents. In Axelrod’s
model, for instance, this was due to selective interaction between agents. In the HIOM, this effect is due to
hysteresis (explained below) within each agent, which is possible because we use a more realistic model
of the agents. Second, we explicate polarization between agents in a new way. In the HIOM attempts
of activists to influence, the common sense occasionally create opposition and thereby polarization. For
this effect, the interaction of within person and between person dynamics is essential. Third, we derive a
new prediction on avoiding polarization in cases where polarization is caused by selective interaction.

The article is organized as follows. We first introduce a formal model for individual attitudes in which
attitudes are conceptualized as networks of interacting attitude elements. Among other things, this within
agent model clarifies why it is difficult to change highly involved persons’ opinions. We then show that
the complex dynamics of such attitude networks can be summarized by a stochastic cusp model. This
reduced model is used in the second part of the article to model the individual-level behaviour in an
agent-based model of opinion dynamics. By simulations, we show that enriching the behaviour of agents
in this way yield many new interesting avenues for models of social dynamics.

2. The Ising model of attitudes

In the understanding, modification and prediction of human behaviour, the concept of attitudes plays a
central role. Attitudes serve multiple purposes, such as guiding our behaviour and organizing knowledge
[9]. Attitudes are formed through several different processes [10–12] and they range from being highly
stable and impactful to fluctuating and inconsequential [13]. Stable and consistent attitudes are thought to
be essential for human functioning. The empirical data base on attitudes in social psychology is massive
and there exists a rich variety of theories on what the impact of attitudes are on behaviour [14], if and how
they change as a result of exposure to persuasive messages [15, 16], and how people strive for consistency
in their attitudes [17].

Formal models of attitudes are rare but, recently, a network model of attitudes, based on the Ising
model has been introduced [18–21]. The Ising model was originally proposed for ferromagnetism but has
been applied to various other phenomena, such as image segmentation [22], voice recognition [23] and
spatial statistics [24]. This type of analogical modelling is often highly useful in social science research,
as it allows borrowing formalisms from more advanced research fields [25]. The limitation is that a full
quantitative application is out of scope, but as we will show here, there are many interesting qualitative
properties that can be derived from such a model. The most important qualitative property of the Ising
model, modelled on dimensions higher than one, is that it exhibits a first order phase transition.

In the Ising attitude model, an attitude is defined as a network of many interacting nodes (see Fig. 1,
top left panel). These nodes represent beliefs (meat production impacts climate), feelings (loves steak)
and behaviours (eat burger) that relate to the attitude object (meat eating). Adopting the Ising model
comes with advantages, as we will show below, but also requires simplifying assumptions, which may
be judged untenable.

The first assumption is that nodes (representing the attitude elements) can be characterized as two-
valued systems (e.g. ‘on’ versus ‘off’, ‘pro’ versus ‘con’). Whether this is reasonable depends on the
definition of nodes. We would probably express global descriptions of behaviour, such as one’s vegetarian
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THE HIERARCHICAL ISING OPINION MODEL 3

Fig. 1. The Ising attitude model and its approximation by the cusp singularity. The network consists of binary nodes x representing
feelings, beliefs and behaviours towards the attitude object. Dispositions, such as external influences, are denoted by τ . Connections
ω between nodes are symmetrical. In the cusp, the sum of all node values, �x or O (opinion), has either one or three fixed points. In
the case of three fixed points, the middle one is unstable (located in the grey area). The number of fixed points depend on the control
variables I = mean(τ ), the informational external influences, and A, the attention paid to the attitude object. Two intersections of
the cusp are hysteresis and the pitchfork bifurcation. Hysteresis possibly explains resistance to persuasion; the pitchfork describes
individual polarization.

behaviour on some ordinal scale (from not at all to very consistent), but on a more fine-grained level (con-
sumes horse meat, wears leather shoes, etc.) a binary scale often suffices. Non-binary, multi-categorical,
nodes are possible and are captured by related models [26].

The second assumption of the standard Ising model is that the connections between nodes are sym-
metrical (undirected). Many connections between attitude nodes are probably symmetric but this might
sometimes be unrealistic. For instance, the connection between belief nodes (meat is expensive) and
behaviours (buying meat) are probably asymmetrical. In Appendix A, we discuss the directed Ising
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4 H. L. J. VAN DER MAAS ET AL.

model and show by simulation that allowing for asymmetrical positive connections weights will not
change the results in our case.

The third assumption is that nodes have dispositions. These dispositions represent the probability of
a given attitude node to be endorsed or not when there were no effects of other nodes in the network. One
way to think about these dispositions is in terms of external social influences (cf. external field), such as
the common sense on an issue like the environmental effects of meat consumption. Dispositions can be
node specific or equal for all nodes.

Variables associated with elements or nodes are denoted by xi ∈ { + 1, −1}, connections weights
by ωij and dispositions by τi (i in 1..n). We will summarize the mean effect of the dispositions τ̄ by the
concept of information I(I = τ̄ ). In the between subject model, explained in Section 6, agents exchange
information, meaning that they influence each other’s dispositions of attitude nodes.

Based on these assumptions, a measurement theory for attitudes has been developed and applied to
several datasets [20]. While psychologists often invoke latent variables to explain correlations between
indicators or symptoms of constructs like attitudes, the Ising model of attitudes does not require such an
explanation. In the Ising model of attitudes, stable attitudes are emergent phenomena. Main concepts in
the attitude literature, such as attitude strength, ambivalence and cognitive consistency can be precisely
defined in network terms [18].

Several papers describe the formal relationship between the Ising model and popular statistical mod-
els, such as the log-linear model, the logistic regression and item response theory models [27]. These
relationships are another reason to accept the simplifying assumptions of the standard Ising model when
applied to psychological constructs.

3. Entropy reduction

Given these first assumptions it is useful to define the micro- and macrostate of an attitude. The con-
figuration x = (x1, . . . , xn) of the attitude elements constitutes the microstate of the attitude, whereas
the macrostate is defined as the number of positive versus negative attitude elements �x (similar to the
definition of magnetization). The global evaluation of an attitude object, or opinion, can be defined as a
situation-dependent weighted sum score [21]. Here, we simply define opinion O as �x, the variable of
interest in the between subject model that will be described later.

The relation between the microstates and the macrostate has important implications for the dynamics
of attitudes. A disorganized attitude, consisting of many random microelements, is associated with ‘a
close to zero’ macrostate, implying an inconsistent attitude. The Boltzmann entropy (Sb) of the network
can thus be understood as the inconsistency of an attitude in the sense that it relates to the number W of
microstates that can realize the macrostate (Sb = lnW). The Boltzmann entropy therefore describes how
(dis)organized an attitude with a given macrostate is.

The second law of thermodynamics, a famous law in the general theory of these types of systems,
implies that the entropy of an isolated system always increases (although not necessarily monotonically
[28]). If humans existed in isolation, it can be stated, based on this law, that the inconsistent and unstable
state (high attitudinal entropy) is the natural state of an attitude. An important question is thus how stable
and consistent attitudes are developed and maintained [29].

To model the development of stable, low entropy, attitudes, we need one additional assumption.
The fourth assumption is that the probability of an element to behave in accordance with the state of
the network depends on how much one focuses attention on or thinks about the attitude or attitude
object. The state is defined by the values of neighbouring elements, the strength of connections and
the dispositions of elements. Thus, we assume that attention, denoted by A, has an analogous effect on
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THE HIERARCHICAL ISING OPINION MODEL 5

attitude representations as inverse temperature has on thermodynamic systems. If attention to the attitude
object is low elements tend to behave randomly; if attention is high, then elements are aligned. How
much one attends to or thinks about an attitude object depends on other factors, such as involvement or
importance [30].

To state these assumptions mathematically, we adopt the standard Hamiltonian energy function
associated with this type of Ising network:

H (x) = −
∑

i

τixi −
∑
〈i,j〉

ωijxixj. (1)

Thus, states of nodes that are incongruent to their associated dispositions cause higher amounts of energy.
The same holds for positively connected nodes that are in incongruent states. The energy determines the
probability of states according to the following equation:

Pr(X = x) = exp(−AH(x))

Z
, (2)

where Z is an integration constant such that the probabilities sum to one and A represents attention. Note
that if A = 0, all states are equally probable and entropy will be at its maximum.

These equations are instrumental in simulation dynamics for the Ising model. In every iteration of
these Glauber dynamics [31], a random node is first selected. It is then computed how much the energy
of the network changes if the node is flipped (�H). The probability of such spin flips follows from the
Boltzmann factor and is 1/(1 + exp(-A�H)). Thus, for A = 0 flips are random, and for high A the lower
energy state is almost always preferred. In the present case, this means that with sufficient attention people
tend to reduce inconsistency in their attitude networks. We note that this setup of the model is remarkably
consistent with the root psychological theory of attitudes, the theory of cognitive dissonance [17].

Note that at least two types of high entropy attitudes exist. The first type consists of ‘unattended’
attitudes, cases where one simply has never thought about this issue. The second type, in contrast,
concerns issues that one cares about, but consistency is hard to achieve due to an irregular configuration
of dispositions and connection weights. For many smokers, for instance, the urge to smoke (the disposition
for the main behavioural node) conflicts with the opposite influence of the neighbouring nodes (smoking
causes cancer). The behaviour of these high entropy attitudes is intriguing and could involve a sudden
transition to a new equilibrium state, as explained in the next section.

4. The dynamics of attitudes

The behaviour of the Ising model has been studied in great detail. We are specifically interested in the
dynamics of the macrostate, the sum of all microstates (nodes), because it determines the overall opinion.
It has been shown, using the mean field approximation, that the equilibrium behaviour of the Ising model,
under rather general assumptions, can be described by the cusp catastrophe [32, 33]. Formally, the cusp
is a second order Taylor approximation of the Curie Weiss solution [34]. It is approximately correct for
many instances of the Ising model. In Appendix A, this is further discussed.

The equilibria of the cusp catastrophe are given by the cubic equation:

Y 3 − aY − b = 0, (3)
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6 H. L. J. VAN DER MAAS ET AL.

where Y is called the behaviour variable, a is called the splitting variable and b is called the normal variable.
Many phase transitions can be modelled using the cusp [35]. For instance, for the phase transition between
states of water (solid to liquid), a approximately equals pressure and b temperature.

Also, for the Ising attitude model the definitions of the normal and splitting axes are straightforward.
The behavioural variable relates to opinion, defined as the sum of the node values (Y ∼ O = �x). The
normal variable or axis relates to information (b ∼ I = τ̄ ) and the splitting axis represent attention
(a ∼ A). This makes the understanding of the dynamics of the Ising attitude model relatively simple.
Figure 1 displays the cusp, its relation to the Ising model and two intersections.

Starting at the back of the cusp, at I = A = 0, increasing attention A leads to a pitchfork bifurcation,
as the middle state O = 0 becomes unstable and O bifurcates to either strongly positive or negative
values. This is the first main prediction of the Ising model of attitudes. Increasing attention or thought
leads to polarization of attitudes. There is ample evidence for this so-called mere thought effect [36].

For values of A close to zero, at the back of the cusp, changing information I from negative to positive
and vice versa leads to smooth changes in O. However, at the front of the cusp, when A is positive and
behaviour is polarized, the effect of changing I is more intriguing. The change in I has hardly any effect
until the original stable state disappears and a sudden jump to the alternative stable state takes place. This
applies to increases and decreases in I but the sudden jumps ‘up’ and ‘down’ do not take place at the
same value of I . This delay in the sudden jump is called hysteresis. This is the second main prediction.
Informing people about the validity of the other attitude position (thus manipulating I) may not result in
attitudinal change. Hysteresis possibly explains why persuasion is often so hard, especially when people
are highly attentive to and involved in the issue [21, 37].

This explanation is an important result. As Eagly and Chaiken [38] noted: ‘explaining why people
are so often effective at resisting efforts to change their strong attitudes remains one of the core issues
of attitude theory’ (p. 680). One interesting implication of this prediction is that effective persuasion
might require a decrease in A before I is changed. A mediator in a conflict should first lower attention
(often a function of involvement) before a fruitful exchange of arguments can take place [39]. This might
also explain why difficult negotiations often require prolonged meetings. When tiredness has diminished
involvement, common ground can be reached. Note that the two main predictions are not built into the
model. They follow from the elementary assumptions 1–4.

This is an advantage over earlier work in which the cusp catastrophe is introduced as a phenomeno-
logical model of attitudes [40, 41]. In this earlier work, the cusp is not based on a micromodel of first
principles. Yet, this earlier work, showing for instance an increase of bimodality in attitude distributions
with increasing involvement, is fully consistent with the approach in this article.

5. Networks of networks

The Ising model of attitudes focuses on single attitudes and models them without taking other attitudes
into account. Each person, however, holds a large number of interrelated attitudes, which probably make
up a huge network of attitude elements. In these networks, cliques of highly connected nodes define
attitudes. A model that specifies these dynamics is as yet out of reach, and we defer this important
question to future work. Here, we focus on another extension, that of between person interactions.

Whereas formal approaches to the within person dynamics of attitudes are rare, formal approaches
to the between person dynamics are numerous. Opinion dynamics models are built on three types of
assumptions [5].

The first assumption concerns the agents, especially the agent’s opinions. Opinions can be continuous
or categorical (often binary). For instance, in models such as the voter model, the Sznajd model and social
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THE HIERARCHICAL ISING OPINION MODEL 7

impact theory, opinions are binary, in the Axelrod model they are categorical, and in the Deffuant and
the Hegselmann–Krause models opinions are continuous [42].

Second, the topology of interactions has to be chosen. In many models, individuals are located
regularly in some space, often a two-dimensional grid (lattice) where each individual only interacts with
its neighbours. Alternatively, individuals may interact with random partners or in some complex (growing)
social network.

Third, the interactions between agents need to be defined. Again, there are many options. In Ising type
models, an agent conforms with some probability to the majority opinion in its neighbourhood [43]. In
the prototypical Ising models of opinion dynamics, agents have binary opinions (-1,1), are organized on
a two-dimensional grid, and conform, applying the Glauber dynamics, to their neighbours depending on
the (social) temperature parameter. In the majority rule model, groups of nodes conform to the majority
of the group at once. In social impact theory [44], impact depends on distance between agents, and
persuasiveness and supportiveness of agents. In models with continuous opinions bounded confidence
plays a role: agents compromise in opinions but only when their original opinions are sufficiently similar.

A systematic overview of the various approaches to the modelling of social dynamics is beyond
the scope here. Castellano et al. [5] speak of a real explosion of new models. In the majority of these
models, the agents are relatively simple and one-dimensional. One exception is social impact theory
where three variables describe the state of the agent but two of these variables are fixed parameters.
In the multidimensional Hegselmann–Krause model [45], opinion is multidimensional but these are
independent variables. Martins [46] studies a model in which opinions are continuous but actions are
discrete. Another interesting case is the model of Sobkowicz [47]. He assumes the cusp model for the
individual agent, using emotions and information as control variables. Interactions between agents lead
to changes in opinion and the control variables. For instance, agitated agents make other agents also
agitated. In his opinion model, Sobkowicz reduces the cusp dynamics to a three-state system, opinions
are either -1, 0 or 1. We will not adopt this simplification as one of the central predictions of our model
holds that whether opinions are discrete or continuous depends on the agent’s attention to the attitude
object.

6. The HIOM

As we argue in the first part of this article, the attitude of an agent is a multidimensional construct, which
under some simplifying assumptions can be modelled by an Ising network. A combined model of the
within and between attitude/opinion dynamics could thus be modelled as a hierarchical Ising model.
Hierarchical or multi-layered network models, such as multi-layered neural networks and multi-layered
voter models [48], are studied in many fields [49]. By using the mean field approximation of the Ising
model within persons, such a model is tractable in the form of a network of cusps.

We describe each agent by a cusp model based on three variables, opinion O, attention A and infor-
mation I (see Fig. 1). Note that I is a broad concept in this context—it could, for instance, consist of
scientific facts, rumours or shared fears. O, A and I are continuous variables. Negative O and I reflect a
contra opinion. A is constrained to be non-negative. In our model, the dynamics of O are described by a
cuspoid stochastic differential equation [50, 51]:

dOi = −
(

O3
i − (Ai + Amin)Oi − Ii

)
dt + sOdWi(t) for agent i in1...N . (4)

Change in opinion depends on opinion itself, attention and information. The rate of change depends on
dt. The last term represents Wiener (Brownian) noise with variance sO, incorporating effects on O not
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8 H. L. J. VAN DER MAAS ET AL.

Fig. 2. The left panel (a) shows a typical times series for the ‘ambivalent case’ for fixed A and I for one agent (no interactions). In
this case, attention is high (A >> 0) but information pro and contra balance out (I = 0). Due to noise, spontaneous sudden jumps
between the two alternative stable states occur. The right panel (b) shows hysteresis in O as function of I for different values of A.

included in A and I . To illustrate the rich behaviour of this equation, Fig. 2a displays a typical bistable
case for one agent (sO = 0.15, dt = 0.1, A = 1.5, I = 0, Amin = −0.5). Figure 2b shows the hysteresis
effect in opinion O as function of information I for different levels of attention (sO = 0.01, dt = 0.1). To
incorporate close to linear change in O as function of I , we set a = A + Amin, where Amin = −0.5 and
A � 0.

Agents interact with other agents in a network. For the HIOM, the exact choice of social network
topology is not essential. We experimented with various scale free and small-world networks, with similar
qualitative results. In our main simulations, we apply the Watts–Strogatz model [52], the stochastic block
model [53, 54] and the lattice model [55], which are all popular in social network analysis.

A central postulate of the HIOM is that effects of social interactions on opinion are not direct, but
operate via A and I . The dynamics of A and I are governed by three assumptions.

The first assumption is that the probability that an agent initiates an interaction with a randomly
selected neighbour depends on the agent’s attention to the attitude object. We expect an agent who
frequently attends to the attitude object (e.g. a highly involved agent) to initiate interactions more often
than uninvolved agents (see [56] for a similar assumption). This asynchronous weighted agent selection
is implemented by:

Pr
(
selectagenti

) = Ai/
∑

i

Ai If ∀A = 0 no agent is selected. (5)

The second assumption concerns the dynamics of attention. We assume that attention slowly decays over
time if the agent is not involved in any interactions but increases due to interactions. This assumption is
based on the notion that involvement or interest in an issue slowly decays. Interactions, a discussion for
instance, generally increases attention to the object. This is formalized as follows:

dAi = −2dA

N2
Ai + dAui (2A∗ − Ai), (6)

where ui = 1 if the agent is involved in an interaction. Constant dA determines the rate of change in A. A∗

is the equilibrium state. Figure 3 shows an example of the time course of involvement (dA = 0.2, p(u =
1) = 0.05, A∗ = 1).
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THE HIERARCHICAL ISING OPINION MODEL 9
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Fig. 3. The left panel demonstrates the dynamics of attention to an attitude: attention decreases slowly but increases when interactions
(red spikes) take place. The right panel concerns the information update function. It shows resistance, r, as function of the difference
in attention of agents i and j, modified by persuasion, p, and base resistance, rmin.

The third and last assumption concerns the update of information. We assume that information changes
during interactions between agents. We expect that this exchange of information is an averaging process
weighted by attention. If agent i is less attending to the attitude object than agent j, i moves more to j
than j moves to i. This update of information is modelled by:

Ii = rIi + (1 − r) Ij + N (0, sI) , where r = rmin + 1 − rmin
1 + e−p(Ai−Aj)

, (7)

where Ii and Ij denote the information of the two agents i and j. Resistance, r in [0,1], determines the
relative impact of agent j on agent i and is a logistic function of the difference in attention in agents i
and j. If Ai << Aj, r will be close to zero and the information in agent i will change to the value of I in
agent j. The strength of this effect is determined by the steepness, p, of the logistic function. We interpret
p as a persuasion parameter. If p is high small changes in attention lead to large changes in information.
Parameter rmin determines the minimal value of r, and functions as a base resistance parameter. If rmin is
high, r will be high and agents will stick to their informational state. If sI > 0 some normally distributed
noise is added. Adding noise prevents the variance in information to converge to zero.

With these three assumptions the HIOM is complete. We specified the opinion dynamics of agents
(Equation 4), a topology and dynamics of interactions (Equations 5–7). With regard to the second
assumption, we note that we could not find empirical underpinning for this seemingly noncontrover-
sial assumption. The role of involvement in attitudes has been extensively studied but not the dynamics
of involvement itself. With regard to the third assumption, we note that this dynamic is clearly a gross
simplification of what can happen in social interactions [57]. The weighted averaging of information can
however be justified by analysing the effect of coupling two Ising networks of attitude elements. The
higher involved and attentive agent will be more consistent and thus strongly influence the (inconsistent)
states of the uninvolved agent.

To summarize, more realistic (and complicated) assumptions and definitions are possible, but our
current setup suffices to reproduce important polarization phenomena and to derive new predictions from
the HIOM.
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10 H. L. J. VAN DER MAAS ET AL.

7. Hypotheses

The main novelty of the HIOM is that agents may behave continuously or categorically depending on
their attention to the subject. When agents behave categorically, they may display hysteresis. As far as
we know hysteresis within agents is a new way to explain polarization and a new answer to Axelrod’s
question on prevailing differences between people even when they are alike in their underlying beliefs
(e.g. information). Simulation 1, reported below, demonstrates that polarization is an enduring effect even
when the original cause of polarization (differences in information) evaporated. We show that hysteresis
indeed causes this effect.

We hypothesized that hysteresis within agents may also lead to polarization in rather unexpected ways.
An interesting puzzle in the dynamics of opinion change is that some opinions remain fairly neutral for
a long time but then suddenly polarize [58]. An example of such dynamics is the Dutch black Pete
discussion [59]. The black Pete character is part of the annual children’s feast of St. Nicholas, celebrated
on the evening of 5 December in the Netherlands. For a long time, people’s attitudes towards black
Pete could be characterized as slightly positive and by low involvement and thus low attention to the
attitude object. In the last 15 years, the debate about black Pete (whether or not it is a racial stereotype)
became tremendously polarized. Somehow, the activists did not convince the whole uninvolved majority
but created fierce opposition in some people of the majority. We call this the persuasion paradox.

This persuasion paradox, related to, for instance, the boomerang effect [60] and the backfire effect
[61], refers to the phenomenon that an attempt to persuade someone sometimes results in the adoption
of an opposing position. The theory of psychological reactance [62, 63] explains this effect using the
concept of freedom; if freedom is threatened, people become motivated to restore it. Trevors et al. [64] list
many examples of this effect and provide an explanation in terms of negative emotions (cf. involvement).
The HIOM produces this paradox in a similar but formal way. In the second simulation, we demonstrate
this persuasion paradox in the HIOM.

Our last application of the HIOM concerns a solution or escape from polarization in continuous opinion
models with bounded confidence. Polarization in such models is generally attained by restrictions on the
interactions between agents [65].

Hegselmann and Krause [66] introduced a typology of continuous opinion models. In the simplest
form, the interaction weights are fixed and independent of O (De Groot model). In the Friedkin–Johnsen
model [67] a susceptibility parameter is added. If susceptibility is low, agents are not influenced socially
and stick to their initial opinion. The base resistance parameter in equation 7 is based on a similar idea
(susceptibility being equal to 1 - rmin). The third and most important form is bounded confidence models.
In these models, examples being the Deffuant–Weisbuch model and the Hegselmann–Krause model,
opinion adjustments only take place when the absolute difference in opinions is below some threshold tO.
This idea resembles the concept of latitude of rejection in social judgment theory [68, 69]. We incorporate
bounded confidence by adding the condition |Oi − Oj| < tO to the model. If this condition is not met
neither A nor I is updated.

Hegselmann and Krause provide analytical proof and simulations on the convergence to consensus
of these models. Generally, they conclude that consensus is difficult when (a) (subgroups of) agents are
unconnected, (b) susceptibility is low or (c) the bounded confidence threshold on interactions is low.

The HIOM is similar to the De Groot model when A is small and equal for all agents. In this case O ≈ I ,
as O is approximately a linear function of I (see Fig. 2b, blue line) and consensus is to be expected. If we
introduce bounded confidence in the HIOM, the dynamics become fundamentally different. Depending
on the threshold, a number of opinion groups may emerge. The bounded confidence model is a very active
field of research [70] and many variants have been proposed.
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The standard solution for polarization in these models is to raise the threshold, such that oppos-
ing agents exchange information. This, however, may not be so easy in practice. Here we offer a new
mechanism for reaching consensus in bounded confidence models. This mechanism is based on a contra-
intuitive intervention that makes use of the special dynamics of the HIOM. In this intervention activists
are temporarily set to the opposite (conservative) opinion while their underlying attention and informa-
tion is preserved. They may stay in the opposite opinion for some time because of the hysteresis effect,
but eventually they jump back. However, in the mean time they can exchange information with agents
holding conservative views, because they now pass the bounded confidence threshold. As these activists’
attention is generally higher their impact on these less involved agents is strong. In Simulation 3, we
show that this intervention leads to a substantial opinion switch.

8. Measures

The quantification of polarization is not a simple matter [71]. A popular but conservative test of bimodality
is Hartigan’s dip statistic [72], which we apply for formal testing. Its values vary roughly between 0 and
0.05, where higher values indicate less unimodality. Additionally, we quantify the behaviour of the HIOM
with two simple measures, the proportion of positive opinions and variance in opinion. The proportion
of opinions reveals whether opinions converged to one of the extremes while the variance of opinions
indicates polarization. Additionally, we compute Cardan’s discriminant (CD = 27I2− 4A3), which is
negative when agents reside in the bifurcation set (bistable area) of the cusp.

Our last measure concerns correlation between opinions of neighbouring agents. The assortativity
coefficient [73] measures the clustering of opinions in the network. If the coefficient is high, connected
vertices tend to have the same values.

9. Simulations

The HIOM algorithm can be summarized as follows.

• Choose a network topology, such as a stochastic block model

• Set model parameters N , dt (0.01), Amin (−0.5), A* (1), sO (0.01), sI , dA, p, rmin, and tO. If values are
given in parentheses these are default values in all our simulations.

• Initialize agents, set Iinit , Oinit and Ainit .

• Iterate
• Randomly choose one agent, weighted with attention A (eq. 5)

• Randomly choose a neighbour as partner in the interaction

• If the opinion difference between these two agents is less than tO:
• Add attention to both agents (eq. 6, dAui(2A∗ − Ai))

• Exchange information (eq. 7)

• Apply decay in A to all agents (eq. 6, − 2dA
N2 Ai)

• Update opinion O in all agents (eq. 4).

In each of the simulations we specify the specific parameter settings. R code for all simulations are
publicly available at: https://github.com/hvdmaas/HIOM.
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Fig. 4. Polarization in the multi-agent model. Polarization in the form of clusters emerges spontaneously and persists when infor-
mation underlying opinions is equal and neutral for all agents. When attention also diminishes, opinions become neutral. Negative,
neutral and positive opinion (information) are displayed on a colour scale from red to white to blue. Node borders of agents are
black, except when an agent is ambivalent (OiIi < 0 and CDi < 0). For ambivalent agents, border colours correspond to their
informational state. Below the networks the distributions of O, I and A are displayed. Hartigan’s D is given and is significant (*)
when the opinion distribution is not unimodal. The assortativity measure is correlational measure of clustering of opinions.

9.1 Polarization due to hysteresis

To test for Axelrod polarization effect, we run the following simulation. We choose a Watts–Strogatz
small-world model [52], with a rewiring probability of 0.02. We start the system with randomly selected
I and O (Iinit = N(0, 0.3), Oinit = N(0, 0.3)). All agents are and stay highly attentive (Ainit = 1, dA = 0).
Furthermore, we set N = 400, dt = 0.01, p = 1, rmin = 0, sI = 0 and tO to an arbitrary high value such
that bounded confidence plays no role.

The first panel of Fig. 4 shows the initial random state, the second panel shows the polarization in
clusters after 5,000 iterations. After 5,000 iterations, we let the information I shrink to 0 for all agents.
Thus, all agents become equal (Ai = A = 1, Ii = I = 0). But instead of consensus to a neutral opinion a
polarized landscape remains (Panel 3, after 10,000 iterations). This remaining polarization is due to the
hysteresis effect. Agents stick to their ‘old’ opinion which is possible due to their high attention. After
10,000 iterations, we let attention shrink to zero too, resulting in convergence to a neutral opinion (panel
4, after 15,000 iterations). This convergence occurs because at low attention hysteresis is absent.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/2/cnaa010/5823576 by U
niversiteit van Am

sterdam
 user on 12 February 2021



THE HIERARCHICAL ISING OPINION MODEL 13

9.2 Opposition to activism: the case of black Pete

We simulate the persuasion paradox by setting up an initial state in which almost all agents (conservatives)
are moderately positive (Iinit = 0.1) and lowly attentive (Ainit = 0), except for two individuals. These two
subjects (activists) are negative (Iinit = −0.5) and highly involved and attentive (Ainit = 1). Persuasion is
set to p = 2, such that when an highly attentive activist and a lowly attentive conservative interact, the
activist tends to ‘win the debate’ and copies his I to the conservative agent. We apply weighted agent
selection, thus only highly attentive agents initiate interactions. We further set dt = 0.01, dA = 0.1,
rmin = 0.1, sI = 0.0005 and tO to an arbitrary high value. In this simulation, we use a stochastic block
model (N = 400) with 10 clusters as social network (within and between connectivity probabilities of
0.001 and 0.2, respectively).

The naive expectation for this simulation is that activists quickly spread. They are the only ones
initiating interactions and win all debates. They copy their informational state to any conservative they
interact with. But Fig. 5 shows otherwise. Initially, activists spread quickly but they also create their own
opposition, resulting in strong polarization.

Several parameters settings affect this effect. Two important parameters are the rate of change in A
(dA) and the base resistance of agents (rmin). We expect that for activist to be successful dA and rmin should
be low, such that change in information dominates change in attention. We simulated data for different
combinations of dA and rmin for the stochastic block model used in Fig. 5 and for a two-dimensional
lattice as network topology. Figure 6 displays the outcomes for the probability of positive opinions and
Hartigan’s dip test. The results indicate an interaction effect. For base resistances larger 0.3, an increase
in the rate of change in attention indeed lowers the success of activists. Their actions lead to polarization,
as indicated by Hartigan’s D statistic, or, when base resistance is very high (> 0.6) to dominance of the
conservative opinion. For base resistances lower than 0.3, an increase in the rate of change in attention
leads to dominance of the activist’s opinion. We note that the results for both network topologies are
similar, except for the spread of activists for low values of dA and rmin, which is faster in the lattice model.

9.3 A solution to polarization: the meat-eating vegetarian

The last application of the HIOM concerns the persuasion problem in continuous opinion models. In
these models, bounded confidence is a crucial cause of polarization. If opinions of agents differ above
some threshold, no interaction and no exchange of information take place. The HIOM offers a new way
out of this polarization dilemma.

In the HIOM, it is possible to have agents that have a mismatch between I and O (due to the hysteresis
effect). An example would be a meat-eating vegetarian, a person with information consistent with the
vegetarian point of view, but with non-vegetarian behaviour. Consider the following scenario. We setup a
social network with 400 agents, as in the previous simulation. Agents belong to either group V (vegetarian,
20%) or group M (meat eating, 80%). The V agents are highly involved and attentive (Ainit = 1) and have
extreme negative (contra) information (Iinit = −0.4), the M agents are less attentive (Ainit = 0.1) and have
low positive I (Iinit = 0.1). Other parameters are set to: p = 2, rmin = 0, dA = 0.01, dt = 0.01, sO = 0.0001
and sI = 0.0. Note the low value of dA. This setting limits the persuasion paradox effect in this simulation.
The bounded confidence threshold tO is set to 0.2.

In this setup, due to bounded confidence, no transitions between states happen. Only interactions
between very similar agents occur with no effect on the polarized state. But now, as intervention, we
introduce meat-eating vegetarians (i.e. agents, who have negative I , but positive O). In each iteration,

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/2/cnaa010/5823576 by U
niversiteit van Am

sterdam
 user on 12 February 2021



14 H. L. J. VAN DER MAAS ET AL.

Fig. 5. The black Pete case. The stars indicate the two first activists. Top panels: Initially, activist (red) quickly persuade lowly
involved conservatives (light blue). However, they not only spread their point of view (information) but also increase attention
in interaction partners. Some conservatives radicalize in the opposite direction. The lower left panel shows a strongly polarized
state after 25,000 iterations. Right bottom panel provides the explanation of this effect. Activists attract conservatives to their
informational position because, due to their higher attention to the attitude object, they ‘win’ the debates. Thus, conservatives move
along the information (I) axis to the activist position (path A). However, due to interactions, the attention to the attitude object
in conservatives increases too. If the change in attention is too fast, some conservatives may become anti-activists, resulting in
polarization. They will follow path B instead of path A.

with a small probability (0.0005), we reverse the opinion of some V agents (with O < 0, I < 0 and
A > 0). This changes vegetarians into meat-eaters. Note that we only change O and not I . Due to the
hysteresis effect, this new state is temporarily stable (see Fig. 2a). Agents will stay in this new state
but will probably flip back after some iterations. The point of this intervention is that these trans-
formed agents are ‘trusted’ by the M agents because they have similar opinions. The effect of the
succeeding interaction is large because the I update is weighted by attention which is higher in the
V agents. In this way, the meat-eating vegetarians change the common opinion. This is demonstrated in
Fig. 7.

To study the robustness of this effect, we repeated this simulation for a combination of values of the
probability of perturbations, p(perturbation) and the bounded confidence threshold tO. Figure 8 displays
the effects of these parameters on the probability of a positive opinion (p(O > 0) and Hartigan’s D
statistic.
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Fig. 6. Opposition to activism as function of rate of change in attention (dA) and base resistance (rmin). The figure shows measures
(averages based on 5 replications) of the HIOM after 25,000 iterations of the network displayed in Fig. 5. Intermediate values of
dA and base resistance results in strong polarization as indicated by proportion of positive opinions (P(O > 0) and Hartigan’s D
statistic. The lower panels show a replication of these results for a network where agents are placed on a two-dimensional lattice.

It is remarkable that we perturb vegetarian agents in the direction of the opposite attitude (we tem-
porarily make them meat-eaters or flexitarians), resulting in a long-term conversion to vegetarianism in the
population.

The HIOM thus predicts, under the assumption of bounded confidence, that persuasion is more
effective when individuals with the same opinion or behaviour but different information interact. To our
best knowledge, there is no empirical research on this prediction although it relates to the dual identity
effect [74]. A related prediction has been put forward in [75]. This prediction might thus be an interesting
avenue for future research.
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Fig. 7. The meat-eating vegetarian. The left panels show two equal initial states. In the top panels bounded confidence prevents
effective interactions between two groups (vegetarians = red; meat eaters = blue). The right top panel shows a polarized state
after 30,000 iterations. However, in the lower panels occasionally vegetarians are perturbed in the direction of meat eating. These
perturbed agents have I < 0 and O > 0, which is possible since A > 0 (hysteresis). Because O > 0 these agents can exchange
information with meat eaters, which leads to slow convergence to the V state in the population (lower right panel).

10. Discussion

We propose the hierarchical opinion model (HIOM). This formal approach unites the rich empirical
database of studies in psychology and sociology and the rapidly developing field of formal modelling of
social interaction in computer science and statistical physics.

Its unique character is due to how the agents are modelled. The agent’s attitude or opinion is con-
ceptualized as a network of feelings, thoughts and behaviours towards an object or issue. We made some
simplifying assumption such that the attitude network resembles the well-known Ising model. Using the
mean field approximation of the Ising network, we derived a stochastic cusp description of the individual
agent. In this cusp model, opinion is based on attention and information. Highly attentive agents are
polarized. Changes in information may lead to sudden jumps and hysteresis. In lowly attentive agents
change in opinion is continuous. Their opinion can be easily influenced but their attitudes are highly
unstable.

Though still simplistic, this agent model is more advanced than the agent models used in most
statistical physics models of social dynamics. Such models are generally divided in two broad classes,
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Fig. 8. The diminishing of polarization by perturbations as function of probability of perturbations, p(perturbation), and the bounded
confidence threshold tO. The figure shows measures (averages based on 5 replications) of the HIOM after 20,000 iterations of the
network displayed in Fig. 7. For tO = 0 and p(perturbation) = 0 the initial polarized state persists. For other values polarization
diminishes (decrease in Hartigan’s D) and the V agents take over (as indicated by the decrease in p(O > 0). A low value of
p(perturbation) is optimal for this effect.

based on whether opinions of agents are discrete or continuous. As the HIOM included both classes,
it integrates these two main branches of sociophysics. Additionally, because agent’s behaviour displays
hysteresis, history, the path to the current state, could come into play.

We have shown that the HIOM reproduces both polarization within and between individuals and,
additionally, derived some novel predictions. The main prediction derived from the HIOM is the persua-
sion paradox. The attempt to persuade other agents, even in ideal circumstances, may fail if the attention
in other agents increases such that these agents polarize in the opposite direction. Secondly, we introduced
a new way to escape polarization in bounded confidence models, based on the hysteresis effect in agents.
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The HIOM is based on some reasonable assumptions on the effects of interaction on attention and
information of agents. We assume (a) that higher attentive (higher involved) agents initiate interactions
more often, (b) that information sharing is weighted by attention and (c) that attention to the attitude
object increases during interaction but otherwise decays.

We note that the three assumptions on the interactions between agents are sufficient to model these
phenomena, but perhaps not necessary. Modifications of the assumptions on information sharing are
possible [76]. With regard to dynamics of attention, we note that not much is known about the way attention
or involvement spread in populations. More empirical research on the tenability of the assumptions on
interaction in the HIOM is required and possible [77].

On the other hand, for our main effects hysteresis in agents is necessary. For instance, in a cusp model
without hysteresis, by applying the so-called Maxwell convention [78], in which systems seek the state
that globally minimizes the potential, agents immediately recover from perturbations. In such a case,
perturbations have no effect at all and there is no escape from polarization.

We clearly did not explore all the new possibilities of the HIOM. In the field of social dynamics, many
other interesting model ideas have been introduced which could be incorporated in the HIOM. Examples
are learning in social networks of opinions [79], the role of mass media [80], the role of reputation [81]
and the effect of leaders on group opinions [82].

Also, many other empirical phenomena studied in social psychology could be investigated in the
HIOM. Social psychologists distinguish between different types of involvement, for instance, claiming
different effects on persuasion [83]. We already discussed many links with the empirical literature, but
further integration with approaches in social science research is required. The HIOM emphasizes the
importance of attention and involvement, in addition to information, in opinion change. It suggests that
persuasion requires a delicate, intermediate, level of involvement. If involvement is too high, attitudes
are polarized due to hysteresis and very hard to influence with new information. If involvement is too
low, attitudes are easily influenced but highly unstable. The lowly involved agent goes where the winds
blows.

Finally, we also expect that more analytical work on the HIOM is possible. Further analysis may, for
instance, require simplification of the weighted agent selection. This idea has ecological validity in our
view, but it considerably complicates the dynamics of the HIOM.

Given that the HIOM unifies the two broad classes of opinion spread models, integrates individual-
level and groups-level polarization, and provides several novel predictions, it is our view that the HIOM
represents a significant advancement in the opinion spread literature. We hope that our work will inspire
both (a) empirical research on the HIOM to further integrate the psychology and sociology of opinion
spread and (b) further analytical work on the HIOM to advance this promising model. We expect that
such work will illuminate several interesting properties at the intersection of psychology, sociology and
statistical physics.
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Appendix A

As we use the cusp as a mean field approximation for the Ising attitude network of individuals, it is
important to know under which conditions this approximation holds. It is known to hold for the Curie
Weiss (CW) model exactly [34], where all nodes are connected to all other nodes. In the Ising attitude
model, several deviations of the Curie Weiss are plausible. First, we do not expect a fully connected
network, a certain percentage of connections will be absent. Second, connection weights will probably
not all have the same value. Third, connections may be asymmetrical. Each of these deviations could
have a large impact on the dynamics [32, 33, 84–86].

However, two properties of the Ising attitude model are of importance. The first is that the connections
may not be all equal, they will be mostly positive (after rescaling). That is, we conjecture that it is generally
possible to define all relevant nodes (for instance, regarding the consumption of meat) such that all positive
values represent a pro attitude and all negative values represent a contra attitude. This is standard practice
in the analysis of attitude questionnaires [87]. We can show that if the variation in connectivity strength
is sub-Gaussian, then the normalizing constant (and hence the probability) is guaranteed to be close to
the true one with exponential rate as a function of the size of the graph [88].

Secondly, we have no reason to believe that attitude networks are extremely sparsely connected. There
will be many positive connections between attitude nodes. In [89], we model the development of Ising
attitude networks using Hebb rule, which says that what fires together wires together. As soon as nodes
display congruent behaviour over time, the Hebb rule will increase the values of the interaction parameters,
leading to positive connections. Connections decay (depending on dω), but this is a slow process. An
Ising model with Hebbian learning is known as the Boltzmann machine or stochastic Hopfield neural
network [90]. Several related modelling approaches of attitudes based on connectionist networks have
been proposed [91, 92]. Under these two conditions, the mean field approximation for the Curie Weiss
probably holds for the Ising attitude model.

In Fig. A.1, we report a simulation study in which we investigate these cases. Each row in this figure
represents a test for the presence of the pitchfork bifurcation (by increasing A, keeping I at zero) and the
hysteresis effect (by subsequently increasing and decreasing I, keeping A at 2), which are typical for the
cusp catastrophe.

The first row shows the CW case. The network (n = 40) is fully connected with all connection weights
equal to 0.2. As expected, both the pitchfork bifurcation and hysteresis emerge. The other rows represent
various deviations from the CW. In the second row connections weights are not equal but sampled from
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Fig. A.1. The robustness of the cusp approximation of the Ising attitude model for various deviations the basic Curie Weis model
(first row). The first column shows the distributions of the interactions ω for the five cases described in the text. The second column
displays the effect of increasing A (attention) on opinion (O = �x), which should give a pitchfork bifurcation. The third column
shows hysteresis as a function of successive increasing and decreasing in information I .

N(0.1,0.1), implying a substantial amount of variations in connections weights, some being negative. In
the third row, additionally, 50% missing links are introduced. In fourth row, additionally, we allow for
asymmetric connections. This case combines three severe deviations of the CW. In all these three cases
the cusp approximation seems to hold.

The last two rows show cases that do not work. The fifth row is equal to the second row but connections
weights are sampled from N(0,0.1), such that they are not mostly positive. In the six row, the connections
are too sparse (95% missing links). In both cases, the pitchfork and hysteresis do not appear. Note,
however that these two cases are not expected under the Ising attitude model due to Hebbian learning. In
the ideal case, Ising attitude networks converge, due to learning, to the CW case.

This simulation supports our claim that the dynamics of the Ising attitude model can be approximated
with the cusp catastrophe if the interactions are not too sparse and are mostly positive. If so, connections
may be asymmetric and vary in value.
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