1,580 research outputs found

    Infectious abortion in swine

    Get PDF
    Cover title.Includes bibliographical references

    Thinking About Privacy: Chapter 1 of "Engaging Privacy and Information Technology in a Digital Age"

    Get PDF
    Just as recent centuries saw transitions from the agricultural to the industrial to the information age and associated societal and technological changes, the early 21st century will continue to pose dynamic challenges in many aspects of society. Most importantly from the standpoint of this report, advances in information technology are proceeding apace. In this rapidly changing technological context, individuals, institutions, and governments will be forced to reexamine core values, beliefs, laws, and social structures if their understandings of autonomy, privacy, justice, community, and democracy are to continue to have meaning. A central concept throughout U.S. history has been the notion of privacy and the creation of appropriate borders between the individual and the state. In the latter 19th century, as industrial urban society saw the rise of large bureaucratic organizations, notions of privacy were extended to the borders between private organizations and the individual. This report focuses on privacy and its intersections with information technology and associated social and technology trends

    A high-throughput immobilized bead screen for stable proteins and multi-protein complexes

    Get PDF
    We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon¼ resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit

    Engaging Privacy and Information Technology in a Digital Age: Executive Summary

    Get PDF
    James Waldo Helen Nissenbaum Sun Microsystems, New York University Vice Chair Robert M. O'Neil Julie E. Cohen University of Virginia Georgetown University Janey Place Robert W. Crandall Digital Thinking Brookings Institution (resigned April 2006) Ronald L. Rivest Oscar Gandy, Jr. Massachusetts Institute of Technology University of Pennsylvania Teresa Schwartz James Horning George Washington University Network Associates Laboratories Lloyd N. Cutler Gary King Wilmer, Cutler, Pickering, Hale & Dorr LLP, Harvard University served as co-chair until his passing in May 2005. Lin E. Knapp, Independent Consultant Ponte Vedra Beach, Florid

    The optimization of in vitro high-throughput chemical lysis of Escherichia coli. Application to ACP domain of the polyketide synthase ppsC from Mycobacterium tuberculosis

    Get PDF
    Protein production in Escherichia coli involves high-level expression in a culture, followed by harvesting of the cells and finally their disruption, or lysis, to release the expressed proteins. We compare three high-throughput chemical lysis methods to sonication, using a robotic platform and methodologies developed in our laboratory [1]. Under the same expression conditions, all lysis methods varied in the degree of released soluble proteins. With a set of 96 test proteins, we used our split GFP to quantify the soluble and insoluble protein fractions after lysis. Both the amount of soluble protein and the percentage recovered in the soluble fraction using SoluLyseÂź were well correlated with sonication. Two other methods, BugbusterÂź and lysozyme, did not correlate well with sonication. Considering the effects of lysis methods on protein solubility is especially important when accurate protein solubility measurements are needed, for example, when testing adjuvants, growth media, temperature, or when establishing the effects of truncation or sequence variation on protein stability
    • 

    corecore