2,564 research outputs found
Field dependent anisotropy change in a supramolecular Mn(II)-[3x3] grid
The magnetic anisotropy of a novel Mn(II)-[3x3] grid complex was investigated
by means of high-field torque magnetometry. Torque vs. field curves at low
temperatures demonstrate a ground state with S > 0 and exhibit a torque step
due to a field induced level-crossing at B* \approx 7.5 T, accompanied by an
abrupt change of magnetic anisotropy from easy-axis to hard-axis type. These
observations are discussed in terms of a spin Hamiltonian formalism.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
Ferromagnetic coupling and magnetic anisotropy in molecular Ni(II) squares
We investigated the magnetic properties of two isostructural Ni(II) metal
complexes [Ni4Lb8] and [Ni4Lc8]. In each molecule the four Ni(II) centers form
almost perfect regular squares. Magnetic coupling and anisotropy of single
crystals were examined by magnetization measurements and in particular by
high-field torque magnetometry at low temperatures. The data were analyzed in
terms of an effective spin Hamiltonian appropriate for Ni(II) centers. For both
compounds, we found a weak intramolecular ferromagnetic coupling of the four
Ni(II) spins and sizable single-ion anisotropies of the easy-axis type. The
coupling strengths are roughly identical for both compounds, whereas the
zero-field-splitting parameters are significantly different. Possible reasons
for this observation are discussed.Comment: 7 pages, 7 figure
Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry
For powder samples of polynuclear metal complexes the dependence of the
inelastic neutron scattering intensity on the momentum transfer Q is known to
be described by a combination of so called interference terms. They reflect the
interplay between the geometrical structure of the compound and the spatial
properties of the wave functions involved in the transition. In this work, it
is shown that the Q-dependence is strongly interrelated with the molecular
symmetry of molecular nanomagnets, and, if the molecular symmetry is high
enough, is actually completely determined by it. A general formalism connecting
spatial symmetry and interference terms is developed. The arguments are
detailed for cyclic spin clusters, as experimentally realized by e.g. the
octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.Comment: 8 pages, 1 figures, REVTEX
Superposition with simplification as a decision procedure for the monadic class with equality
We show that strict superposition, a restricted form of paramodulation, can be combined with specifically designed simplification rules such that it becomes a decision procedure for the monadic class with equality. The completeness of the method follows from a general notion of redundancy for clauses and superposition inferences
Impact of Planetary Mass Uncertainties on Exoplanet Atmospheric Retrievals
In current models used to interpret exoplanet atmospheric observations, the planetary mass is treated as a prior and is measured/estimated independently with external methods, such as radial velocity or transit timing variation techniques. This approach is necessary as available spectroscopic data do not have sufficient wavelength coverage and/or signal-to-noise to infer the planetary mass. We examine here whether the planetary mass can be directly retrieved from transit spectra as observed by future space observatories, which will provide higher quality spectra. More in general, we quantify the impact of mass uncertainties on spectral retrieval analyses for a host of atmospheric scenarios. Our approach is both analytical and numerical: we first use simple approximations to extract analytically the influence of each atmospheric/planetary parameter to the wavelength-dependent transit depth. We then adopt a fully Bayesian retrieval model to quantify the propagation of the mass uncertainty onto other atmospheric parameters. We found that for clear-sky, gaseous atmospheres the posterior distributions are the same when the mass is known or retrieved. The retrieved mass is very accurate, with a precision of more than 10%, provided the wavelength coverage and signal-to-noise ratio are adequate. When opaque clouds are included in the simulations, the uncertainties in the retrieved mass increase, especially for high altitude clouds. However, atmospheric parameters such as the temperature and trace-gas abundances are unaffected by the knowledge of the mass. Secondary atmospheres, expected to be present in many super-Earths, are more challenging due to the higher degree of freedom for the atmospheric main component, which is unknown. For broad wavelength range and adequate signal-to-noise observations, the mass can still be retrieved accurately and precisely if clouds are not present, and so are all the other atmospheric/planetary parameters. When clouds are added, we find that the mass uncertainties may impact substantially the retrieval of the mean molecular weight: an independent characterization of the mass would therefore be helpful to capture/confirm the main atmospheric constituent
Principle and design of pseudo-natural products
Natural products (NPs) are a significant source of inspiration towards the discovery of new bioactive compounds based on novel molecular scaffolds. However, there are currently only a small number of guiding synthetic strategies available to generate novel NP-inspired scaffolds, limiting both the number and types of compounds accessible. In this Perspective, we discuss a design approach for the preparation of biologically relevant small-molecule libraries, harnessing the unprecedented combination of NP-derived fragments as an overarching strategy for the synthesis of new bioactive compounds. These novel ‘pseudo-natural product’ classes retain the biological relevance of NPs, yet exhibit structures and bioactivities not accessible to nature or through the use of existing design strategies. We also analyse selected pseudo-NP libraries using chemoinformatic tools, to assess their molecular shape diversity and properties. To facilitate the exploration of biologically relevant chemical space, we identify design principles and connectivity patterns that would provide access to unprecedented pseudo-NP classes, offering new opportunities for bioactive small-molecule discovery
Collective resonance modes of Josephson vortices in sandwiched stack of BiSrCaCuO intrinsic Josephson junctions
We observed splitting of the low-bias vortex-flow branch in a
dense-Josephson-vortex state into multiple sub-branches in current-voltage
characteristics of intrinsic Josephson junctions (IJJs) of
BiSrCaCuO single crystals in the long-junction limit.
Each sub-branch corresponds to a plasma mode in serially coupled Josephson
junctions. Splitting into low-bias linear sub-branches with a spread in the
slopes and the inter-sub-branch mode-switching character are in good
quantitative agreement with the prediction of the weak but finite
inter-junction capacitive-coupling model incorporated with the inductive
coupling. This suggests the importance of the role of the capacitive coupling
in accurately describing the vortex dynamics in serially stacked IJJs.Comment: 4 pages, 3 figures, 1 tabl
Low temperature magnetization and the excitation spectrum of antiferromagnetic Heisenberg spin rings
Accurate results are obtained for the low temperature magnetization versus
magnetic field of Heisenberg spin rings consisting of an even number N of
intrinsic spins s = 1/2, 1, 3/2, 2, 5/2, 3, 7/2 with nearest-neighbor
antiferromagnetic (AF) exchange by employing a numerically exact quantum Monte
Carlo method. A straightforward analysis of this data, in particular the values
of the level-crossing fields, provides accurate results for the lowest energy
eigenvalue E(N,S,s) for each value of the total spin quantum number S. In
particular, the results are substantially more accurate than those provided by
the rotational band approximation. For s <= 5/2, data are presented for all
even N <= 20, which are particularly relevant for experiments on finite
magnetic rings. Furthermore, we find that for s > 1 the dependence of E(N,S,s)
on s can be described by a scaling relation, and this relation is shown to hold
well for ring sizes up to N = 80 for all intrinsic spins in the range 3/2 <= s
<= 7/2. Considering ring sizes in the interval 8 <= N <= 50, we find that the
energy gap between the ground state and the first excited state approaches zero
proportional to 1/N^a, where a = 0.76 for s = 3/2 and a = 0.84 for s = 5/2.
Finally, we demonstrate the usefulness of our present results for E(N,S,s) by
examining the Fe12 ring-type magnetic molecule, leading to a new, more accurate
estimate of the exchange constant for this system than has been obtained
heretofore.Comment: Submitted to Physical Review B, 10 pages, 10 figure
Observation of plaquette fluctuations in the spin-1/2 honeycomb lattice
Quantum spin liquids are materials that feature quantum entangled spin
correlations and avoid magnetic long-range order at T = 0 K. Particularly
interesting are two-dimensional honeycomb spin lattices where a plethora of
exotic quantum spin liquids have been predicted. Here, we experimentally study
an effective S=1/2 Heisenberg honeycomb lattice with competing nearest and
next-nearest neighbor interactions. We demonstrate that YbBr avoids order
down to at least T=100 mK and features a dynamic spin-spin correlation function
with broad continuum scattering typical of quantum spin liquids near a quantum
critical point. The continuum in the spin spectrum is consistent with plaquette
type fluctuations predicted by theory. Our study is the experimental
demonstration that strong quantum fluctuations can exist on the honeycomb
lattice even in the absence of Kitaev-type interactions, and opens a new
perspective on quantum spin liquids.Comment: 32 pages, 7 Figure
Exchange-coupling constants, spin density map, and Q dependence of the inelastic neutron scattering intensity in single-molecule magnets
The Q dependence of the inelastic neutron scattering (INS) intensity of
transitions within the ground-state spin multiplet of single-molecule magnets
(SMMs) is considered. For these transitions, the Q dependence is related to the
spin density map in the ground state, which in turn is governed by the
Heisenberg exchange interactions in the cluster. This provides the possibility
to infer the exchange-coupling constants from the Q dependence of the INS
transitions within the spin ground state. The potential of this strategy is
explored for the M = +-10 -> +- 9 transition within the S = 10 multiplet of the
molecule Mn12 as an example. The Q dependence is calculated for powder as well
as single-crystal Mn12 samples for various exchange-coupling situations
discussed in the literature. The results are compared to literature data on a
powder sample of Mn12 and to measurements on an oriented array of about 500
single-crystals of Mn12. The calculated Q dependence exhibits significant
variation with the exchange-coupling constants, in particular for a
single-crystal sample, but the experimental findings did not permit an
unambiguous determination. However, although challenging, suitable experiments
are within the reach of today's instruments.Comment: 11 pages, 6 figures, REVTEX4, to appear in PR
- …