For powder samples of polynuclear metal complexes the dependence of the
inelastic neutron scattering intensity on the momentum transfer Q is known to
be described by a combination of so called interference terms. They reflect the
interplay between the geometrical structure of the compound and the spatial
properties of the wave functions involved in the transition. In this work, it
is shown that the Q-dependence is strongly interrelated with the molecular
symmetry of molecular nanomagnets, and, if the molecular symmetry is high
enough, is actually completely determined by it. A general formalism connecting
spatial symmetry and interference terms is developed. The arguments are
detailed for cyclic spin clusters, as experimentally realized by e.g. the
octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.Comment: 8 pages, 1 figures, REVTEX