24 research outputs found

    Guidelines for the Detection of Babesia and Theileria Parasites.

    Full text link
    The genera Babesia and Theileria (phylum Apicomplexa, order Piroplasmida) are mainly transmitted by Ixodid ticks in which the sexual part of their life cycle followed by sporogony takes place. They include protozoan parasites that infect erythrocytes of a variety of vertebrate hosts, including domestic and wild animals, with some Babesia spp. also infecting humans. Babesia sporozoites transmitted in the tick's saliva during the bloodmeal directly infect erythrocytes, where they asexually multiply to produce pear-shaped merozoites in the process of merogony; whereas a pre-erythrocytic schizogonic life stage in leukocytes is found in Theileria and precedes merogony in the erythrocytes. The wide spectrum of Babesia and Theileria species and their dissimilar characteristics with relation to disease severity, transmission, epidemiology, and drug susceptibility stress the importance of accurate detection of babesiosis and theileriosis and their causative agents. These guidelines review the main methods currently used for the detection of Babesia and Theileria spp. for diagnostic purposes as well as epidemiological studies involving their vertebrate hosts and arthropod vectors. Serological methods were not included once they did not indicate current infection but rather exposure.Peer reviewe

    Chlamydophila abortus Pelvic Inflammatory Disease

    Get PDF
    We report the first documented case of an extragestational infection with Chlamydophila abortus in humans. The pathogen was identified in a patient with severe pelvic inflammatory disease (PID) by sequence analysis of the ompA gene. Our findings raise the possibility that Chlamydiaceae other than Chlamydia trachomatis are involved in PID

    Guidelines for the direct detection of Anaplasma spp. in diagnosis and epidemiological studies

    Get PDF
    The genus Anaplasma (Rickettsiales: Anaplasmataceae) comprises obligate intracellular Gram-negative bacteria that are mainly transmitted by ticks, and currently includes six species: Anaplasma bovis, Anaplasma centrale, Anaplasma marginale, Anaplasma phagocytophilum, Anaplasma platys, and Anaplasma ovis. These have long been known as etiological agents of veterinary diseases that affect domestic and wild animals worldwide. A zoonotic role has been recognized for A. phagocytophilum, but other species can also be pathogenic for humans. Anaplasma infections are usually challenging to diagnose, clinically presenting with nonspecific symptoms that vary greatly depending on the agent involved, the affected host, and other factors such as immune status and coinfections. The substantial economic impact associated with livestock infection and the growing number of human cases along with the risk of transfusion-transmitted infections, determines the need for accurate laboratory tests. Because hosts are usually seronegative in the initial phase of infection and serological cross-reactions with several Anaplasma species are observed after seroconversion, direct tests are the best approach for both case definition and epidemiological studies. Blood samples are routinely used for Anaplasma spp. screening, but in persistently infected animals with intermittent or low-level bacteremia, other tissues might be useful. These guidelines have been developed as a direct outcome of the COST action TD1303 EURNEGVEC (>European Network of Neglected Vectors and Vector-Borne Diseases>). They review the direct laboratory tests (microscopy, nucleic acid-based detection and in vitro isolation) currently used for Anaplasma detection in ticks and vertebrates and their application.This work was done under the frame of COST action TD1303.Peer Reviewe

    Monitoring of alien mosquitoes in Western Austria (Tyrol, Austria, 2018).

    No full text
    Mosquitoes are of major importance to human and animal health due to their ability to transmit various pathogens. In Europe the role of mosquitoes in public health has increased with the introduction of alien Aedes mosquitoes such as the Asian tiger mosquito, Aedes albopictus; the Asian bush mosquito, Ae. japonicus; and Ae. koreicus. In Austria, Ae. japonicus has established populations in various regions of the country. Aedes albopictus is not known to overwinter in Austria, although isolated findings of eggs and adult female mosquitoes have been previously reported, especially in Tyrol. Aedes koreicus had not so far been found in Austria. Within the framework of an alien mosquito surveillance program in the Austrian province of Tyrol, ovitraps were set up weekly from May to October, 2018, at 67 sites- 17 in East Tyrol and 50 in North Tyrol. Sampling was performed at highways and at urban and rural areas. DNA obtained from mosquito eggs was barcoded using molecular techniques and sequences were analysed to species level. Eggs of alien Aedes species were found at 18 out of 67 sites (27%). Both Ae. albopictus and Ae. japonicus were documented at highways and urban areas in both East and North Tyrol. Aedes koreicus was found in East Tyrol. During this mosquito surveillance program, eggs of Ae. albopictus, Ae. japonicus, and Ae. koreicus were documented in the Austrian province of Tyrol. These findings not only show highways to be points of entry, but also point to possible establishment processes of Ae. japonicus in Tyrol. Moreover, Ae. koreicus was documented in Austria for the first time

    Practical Guidelines for Studies on Sandfly-Borne Phleboviruses: Part I: Important Points to Consider Ante Field Work

    No full text
    International audienceThe purpose of this review is to provide practical information to help researchers intending to perform “from field to laboratory” studies on phleboviruses transmitted by sandflies. This guideline addresses the different steps to be considered starting from the field collection of sandflies to the laboratory techniques aiming at the detection, isolation, and characterization of sandfly-borne phleboviruses. In this guideline article, we address the impact of various types of data for an optimal organization of the field work intending to collect wildlife sandflies for subsequent virology studies. Analysis of different data sets should result in the geographic positioning of the trapping stations. The overall planning, the equipment and tools needed, the manpower to be deployed, and the logistics to be anticipated and set up should be organized according to the objectives of the field study for optimal efficiency

    Mary Ann Liebert/Society for Zoonotic Ecology and Epidemiology (SocZEE)

    No full text
    In this series of review articles entitled "Practical guidelines for studies on sandfly-borne phleboviruses," the important points to be considered at the prefieldwork stage were addressed in part I, including parameters to be taken into account to define the geographic area for sand fly trapping and how to organize field collections. Here in part II, the following points have been addressed: (1) factors influencing the efficacy of trapping and the different types of traps with their respective advantages and drawbacks, (2) how to process the trapped sand flies in the field, and (3) how to process the sand flies in the virology laboratory. These chapters provide the necessary information for adopting the most appropriate procedures depending on the requirements of the study. In addition, practical information gathered through years of experience of translational projects is included to help newcomers to fieldwork studies.The work of all authors was carried under the frame of EurNegVec COST Action TD1303. This work was supported, in part, by (1) the European Virus Archive goes Global (EVAg) project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 653316 and by (2) the EDENext FP7-no. 261504 EU project; this article is catalogued by the EDENext Steering Committee as EDENext463 (www.edenext.eu).info:eu-repo/semantics/publishedVersio

    Adjunctive homeopathic treatment of hospitalized COVID-19 patients (COVIHOM): A retrospective case series.

    No full text
    and purpose. COVID-19 is a novel viral disease causing worldwide pandemia. The aim of this study was to describe the effect of adjunctive individualized homeopathic treatment delivered to hospitalized patients with confirmed symptomatic SARS-CoV-2 infection. Thirteen patients with COVID-19 were admitted. Mean age was 73.4 ± 15.0 (SD) years. Twelve (92.3%) were speedily discharged without relevant sequelae after 14.4 ± 8.9 days. A single patient admitted in an advanced stage of septic disease died in hospital. A time-dependent improvement of relevant clinical symptoms was observed in the 12 surviving patients. Six (46.2%) were critically ill and treated in the intensive care unit (ICU). Mean stay at the ICU of the 5 surviving patients was 18.8 ± 6.8 days. In six patients (46.2%) gastrointestinal disorders accompanied COVID-19. The observations suggest that adjunctive homeopathic treatment may be helpful to treat patients with confirmed COVID-19 even in high - risk patients especially since there is no conventional treatment of COVID-19 available at present. [Abstract copyright: Copyright © 2021 Elsevier Ltd. All rights reserved.
    corecore