113 research outputs found

    Intersubject Regularity in the Intrinsic Shape of Human V1

    Full text link
    Previous studies have reported considerable intersubject variability in the three-dimensional geometry of the human primary visual cortex (V1). Here we demonstrate that much of this variability is due to extrinsic geometric features of the cortical folds, and that the intrinsic shape of V1 is similar across individuals. V1 was imaged in ten ex vivo human hemispheres using high-resolution (200 ÎĽm) structural magnetic resonance imaging at high field strength (7 T). Manual tracings of the stria of Gennari were used to construct a surface representation, which was computationally flattened into the plane with minimal metric distortion. The instrinsic shape of V1 was determined from the boundary of the planar representation of the stria. An ellipse provided a simple parametric shape model that was a good approximation to the boundary of flattened V1. The aspect ration of the best-fitting ellipse was found to be consistent across subject, with a mean of 1.85 and standard deviation of 0.12. Optimal rigid alignment of size-normalized V1 produced greater overlap than that achieved by previous studies using different registration methods. A shape analysis of published macaque data indicated that the intrinsic shape of macaque V1 is also stereotyped, and similar to the human V1 shape. Previoud measurements of the functional boundary of V1 in human and macaque are in close agreement with these results

    Occupational Exposure to Hydrazine and Subsequent Risk of Lung Cancer: 50-Year Follow-Up

    Get PDF
    Hydrazine is carcinogenic in animals, but there is inadequate evidence to determine if it is carcinogenic in humans. This study aimed to evaluate the association between hydrazine exposure and the risk of lung cancer.The cause specific mortality rates of a cohort of 427 men who were employed at an English factory that produced hydrazine between 1945 and 1971 were compared with national mortality rates.By the end of December 2012 205 deaths had occurred. For men in the highest exposure category with greater than two years exposure and after more than ten years since first exposure the relative risks compared with national rates were: 0.85 (95% CI: 0.18-2.48) for lung cancer, 0.61 (95% CI: 0.07-2.21) for cancers of the digestive system, and 0.44 (95% CI: 0.05-1.57) for other cancers.After 50 years of follow up, the results provide no evidence of an increased risk of death from lung cancer or death from any other cause

    Dynamical locality of the nonminimally coupled scalar field and enlarged algebra of Wick polynomials

    Full text link
    We discuss dynamical locality in two locally covariant quantum field theories, the nonminimally coupled scalar field and the enlarged algebra of Wick polynomials. We calculate the relative Cauchy evolution of the enlarged algebra, before demonstrating that dynamical locality holds in the nonminimally coupled scalar field theory. We also establish dynamical locality in the enlarged algebra for the minimally coupled massive case and the conformally coupled massive case.Comment: 39p

    Type II critical phenomena of neutron star collapse

    Full text link
    We investigate spherically-symmetric, general relativistic systems of collapsing perfect fluid distributions. We consider neutron star models that are driven to collapse by the addition of an initially "in-going" velocity profile to the nominally static star solution. The neutron star models we use are Tolman-Oppenheimer-Volkoff solutions with an initially isentropic, gamma-law equation of state. The initial values of 1) the amplitude of the velocity profile, and 2) the central density of the star, span a parameter space, and we focus only on that region that gives rise to Type II critical behavior, wherein black holes of arbitrarily small mass can be formed. In contrast to previously published work, we find that--for a specific value of the adiabatic index (Gamma = 2)--the observed Type II critical solution has approximately the same scaling exponent as that calculated for an ultrarelativistic fluid of the same index. Further, we find that the critical solution computed using the ideal-gas equations of state asymptotes to the ultrarelativistic critical solution.Comment: 24 pages, 22 figures, RevTeX 4, submitted to Phys. Rev.

    Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    Get PDF
    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can form in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both redistribute angular momentum; the outcome of the evolution depends on the star's mass and spin. Simulations are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along the spin axis--a promising candidate for the central engine of a short gamma-ray burst. (Abridged)Comment: 27 pages, 30 figure

    Towards the Final Fate of an Unstable Black String

    Get PDF
    Black strings, one class of higher dimensional analogues of black holes, were shown to be unstable to long wavelength perturbations by Gregory and Laflamme in 1992, via a linear analysis. We revisit the problem through numerical solution of the full equations of motion, and focus on trying to determine the end-state of a perturbed, unstable black string. Our preliminary results show that such a spacetime tends towards a solution resembling a sequence of spherical black holes connected by thin black strings, at least at intermediate times. However, our code fails then, primarily due to large gradients that develop in metric functions, as the coordinate system we use is not well adapted to the nature of the unfolding solution. We are thus unable to determine how close the solution we see is to the final end-state, though we do observe rich dynamical behavior of the system in the intermediate stages.Comment: 17 pages, 7 figure

    Gravitational collapse in 2+1 dimensional AdS spacetime

    Get PDF
    We present results of numerical simulations of the formation of black holes from the gravitational collapse of a massless, minimally-coupled scalar field in 2+1 dimensional, axially-symmetric, anti de-Sitter (AdS) spacetime. The geometry exterior to the event horizon approaches the BTZ solution, showing no evidence of scalar `hair'. To study the interior structure we implement a variant of black-hole excision, which we call singularity excision. We find that interior to the event horizon a strong, spacelike curvature singularity develops. We study the critical behavior at the threshold of black hole formation, and find a continuously self-similar solution and corresponding mass-scaling exponent of approximately 1.2. The critical solution is universal to within a phase that is related to the angle deficit of the spacetime.Comment: 31 pages, 20 figures, LaTeX. Replaced with version to be published in Phys. Rev.

    A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.

    Get PDF
    AbstractAutomated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise delineations were made possible by the extraordinary resolution of the scans. In addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single computational atlas of the hippocampal formation with a novel atlas building algorithm based on Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal subregions in structural MRI images, using an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer's disease subjects and elderly controls with 88% accuracy in standard resolution (1mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and classification based on whole hippocampal volume (82% accuracy)

    Initial Conditions for Inflation

    Get PDF
    Free scalar fields in de Sitter space have a one-parameter family of states invariant under the de Sitter group, including the standard thermal vacuum. We show that, except for the thermal vacuum, these states are unphysical when gravitational interactions are included. We apply these observations to the quantum state of the inflaton, and find that, at best, dramatic fine tuning is required for states other than the thermal vacuum to lead to observable features in the CMBR anisotropy.Comment: 31 pages, 4 figure
    • …
    corecore