Black strings, one class of higher dimensional analogues of black holes, were
shown to be unstable to long wavelength perturbations by Gregory and Laflamme
in 1992, via a linear analysis. We revisit the problem through numerical
solution of the full equations of motion, and focus on trying to determine the
end-state of a perturbed, unstable black string. Our preliminary results show
that such a spacetime tends towards a solution resembling a sequence of
spherical black holes connected by thin black strings, at least at intermediate
times. However, our code fails then, primarily due to large gradients that
develop in metric functions, as the coordinate system we use is not well
adapted to the nature of the unfolding solution. We are thus unable to
determine how close the solution we see is to the final end-state, though we do
observe rich dynamical behavior of the system in the intermediate stages.Comment: 17 pages, 7 figure