5,668 research outputs found

    Trapped surfaces in prolate collapse in the Gibbons-Penrose construction

    Get PDF
    We investigate existence and properties of trapped surfaces in two models of collapsing null dust shells within the Gibbons-Penrose construction. In the first model, the shell is initially a prolate spheroid, and the resulting singularity forms at the ends first (relative to a natural time slicing by flat hyperplanes), in analogy with behavior found in certain prolate collapse examples considered by Shapiro and Teukolsky. We give an explicit example in which trapped surfaces are present on the shell, but none exist prior to the last flat slice, thereby explicitly showing that the absence of trapped surfaces on a particular, natural slicing does not imply an absence of trapped surfaces in the spacetime. We then examine a model considered by Barrabes, Israel and Letelier (BIL) of a cylindrical shell of mass M and length L, with hemispherical endcaps of mass m. We obtain a "phase diagram" for the presence of trapped surfaces on the shell with respect to essential parameters λM/L\lambda \equiv M/L and μm/M\mu \equiv m/M. It is found that no trapped surfaces are present on the shell when λ\lambda or μ\mu are sufficiently small. (We are able only to search for trapped surfaces lying on the shell itself.) In the limit λ0\lambda \to 0, the existence or nonexistence of trapped surfaces lying within the shell is seen to be in remarkably good accord with the hoop conjecture.Comment: 22 pages, 6 figure

    Randomized Polypill Crossover Trial in People Aged 50 and Over

    Get PDF
    PMCID: PMC3399742This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Extremal black holes, gravitational entropy and nonstationary metric fields

    Full text link
    We show that extremal black holes have zero entropy by pointing out a simple fact: they are time-independent throughout the spacetime and correspond to a single classical microstate. We show that non-extremal black holes, including the Schwarzschild black hole, contain a region hidden behind the event horizon where all their Killing vectors are spacelike. This region is nonstationary and the time tt labels a continuous set of classical microstates, the phase space [hab(t),Pab(t)][\,h_{ab}(t), P^{ab}(t)\,], where habh_{ab} is a three-metric induced on a spacelike hypersurface Σt\Sigma_t and PabP^{ab} is its momentum conjugate. We determine explicitly the phase space in the interior region of the Schwarzschild black hole. We identify its entropy as a measure of an outside observer's ignorance of the classical microstates in the interior since the parameter tt which labels the states lies anywhere between 0 and 2M. We provide numerical evidence from recent simulations of gravitational collapse in isotropic coordinates that the entropy of the Schwarzschild black hole stems from the region inside and near the event horizon where the metric fields are nonstationary; the rest of the spacetime, which is static, makes no contribution. Extremal black holes have an event horizon but in contrast to non-extremal black holes, their extended spacetimes do not possess a bifurcate Killing horizon. This is consistent with the fact that extremal black holes are time-independent and therefore have no distinct time-reverse.Comment: 12 pages, 2 figures. To appear in Class. and Quant. Gravity. Based on an essay selected for honorable mention in the 2010 gravity research foundation essay competitio

    Maxwell Fields in Spacetimes Admitting Non-Null Killing Vectors

    Get PDF
    We consider source-free electromagnetic fields in spacetimes possessing a non-null Killing vector field, ξa\xi^a. We assume further that the electromagnetic field tensor, FabF_{ab}, is invariant under the action of the isometry group induced by ξa\xi^a. It is proved that whenever the two potentials associated with the electromagnetic field are functionally independent the entire content of Maxwell's equations is equivalent to the relation \n^aT_{ab}=0. Since this relation is implied by Einstein's equation we argue that it is enough to solve merely Einstein's equation for these electrovac spacetimes because the relevant equations of motion will be satisfied automatically. It is also shown that for the exceptional case of functionally related potentials \n^aT_{ab}=0 implies along with one of the relevant equations of motion that the complementary equation concerning the electromagnetic field is satisfied.Comment: 7 pages,PACS numbers: 04.20.Cv, 04.20.Me, 04.40.+

    Reconciling the Evidence on Serum Homocysteine and Ischaemic Heart Disease: A Meta-Analysis

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Regular phantom black holes

    Full text link
    For self-gravitating, static, spherically symmetric, minimally coupled scalar fields with arbitrary potentials and negative kinetic energy (favored by the cosmological observations), we give a classification of possible regular solutions to the field equations with flat, de Sitter and AdS asymptotic behavior. Among the 16 presented classes of regular rsolutions are traversable wormholes, Kantowski-Sachs (KS) cosmologies beginning and ending with de Sitter stages, and asymptotically flat black holes (BHs). The Penrose diagram of a regular BH is Schwarzschild-like, but the singularity at r=0r=0 is replaced by a de Sitter infinity, which gives a hypothetic BH explorer a chance to survive. Such solutions also lead to the idea that our Universe could be created from a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include kk-essence type scalar fields (with a potential) and scalar-tensor theories of gravity.Comment: revtex4, 4 pages, no figure

    Stability of BTZ black strings

    Full text link
    We study the dynamical stability of the BTZ black string against fermonic and gravitational perturbations. The BTZ black string is not always stable against these perturbations. There exist threshold values for m2m^2 related to the compactification of the extra dimension for fermonic perturbation, scalar part of the gravitational perturbation and the tensor perturbation, respectively. Above the threshold values, perturbations are stable; while below these thresholds, perturbations can be unstable. We find that this non-trivial stability behavior qualitatively agrees with that predicted by a thermodynamical argument, showing that the BTZ black string phase is not the privileged stable phase.Comment: 9 pages, revised version to appear in Phys. Rev.

    Dirac Quantization of Parametrized Field Theory

    Get PDF
    Parametrized field theory (PFT) is free field theory on flat spacetime in a diffeomorphism invariant disguise. It describes field evolution on arbitrary foliations of the flat spacetime instead of only the usual flat ones, by treating the `embedding variables' which describe the foliation as dynamical variables to be varied in the action in addition to the scalar field. A formal Dirac quantization turns the constraints of PFT into functional Schrodinger equations which describe evolution of quantum states from an arbitrary Cauchy slice to an infinitesimally nearby one.This formal Schrodinger picture- based quantization is unitarily equivalent to the standard Heisenberg picture based Fock quantization of the free scalar field if scalar field evolution along arbitrary foliations is unitarily implemented on the Fock space. Torre and Varadarajan (TV) showed that for generic foliations emanating from a flat initial slice in spacetimes of dimension greater than 2, evolution is not unitarily implemented, thus implying an obstruction to Dirac quantization. We construct a Dirac quantization of PFT,unitarily equivalent to the standard Fock quantization, using techniques from Loop Quantum Gravity (LQG) which are powerful enough to super-cede the no- go implications of the TV results. The key features of our quantization include an LQG type representation for the embedding variables, embedding dependent Fock spaces for the scalar field, an anomaly free representation of (a generalization of) the finite transformations generated by the constraints and group averaging techniques. The difference between 2 and higher dimensions is that in the latter, only finite gauge transformations are defined in the quantum theory, not the infinitesimal ones.Comment: 33 page

    Isotropic cosmological singularities 2: The Einstein-Vlasov system

    Get PDF
    We consider the conformal Einstein equations for massless collisionless gas cosmologies which admit an isotropic singularity. After developing the general theory, we restrict to spatially-homogeneous cosmologies. We show that the Cauchy problem for these equations is well-posed with data consisting of the limiting particle distribution function at the singularity.Comment: LaTeX, 37 pages, no figures, submitted to Ann. Phy
    corecore