22 research outputs found

    Intragranular defects in As-deposited and Cadmium Chloride treated Polycrystalline Cadmium Telluride solar cells

    Get PDF
    Atomic-scale defects limit the open circuit Voltage, and the conversion efficiency of thin film polycrystalline cadmium telluride solar cells. Using state of the art aberration corrected high resolution transmission electron microscopy, the type, density and atomic structure of intragranular defects present in cadmium chloride treated and untreated CdTe has been established. The cadmium chloride activation process dramatically reduces defect density but faults do remain. Characterizing the defects in both materials is an essential first step to determining their potential electrical effects, and to understanding how the cadmium chloride treatment reduces their density. Improving our knowledge of the mechanisms involved can lead to further process improvements

    Effect of varying process parameters on CdTe thin film device performance and its relationship to film microstructure

    Get PDF
    The performance of CdTe thin film photovoltaic devices are sensitive to process parameters. In this study, efforts are made to further understand the effects of process parameters like process temperature and variation in cadmium chloride passivation treatment on CdTe films deposited using a sublimation based deposition system. The effects on film microstructure are studied using advanced microstructural characterization methods like TEM, SEM, EDS and SIMS while electrical performance is studied using various electrical measurements such as current density vs. voltage and electroluminescence. The aim of this study is to provide new insight into the understanding of relationship between fabrication process, device performance and thin film microstructure

    High resolution 3D chemical characterisation of a cadmium telluride solar cell by dynamic SIMS

    Get PDF
    Impurity elements such as chlorine and sulphur can have significant effects on the electrical performance of cadmium telluride (CdTe) solar cells. Here, the 3D distribution of such elements in a cadmium chloride treated CdTe device has been determined by high resolution dynamic SIMS, a novel technique that has not been applied to thin-film PV cells. It is found that as well as segregating to grain boundaries following treatment, chlorine also segregates to the CdS/CdTe interface. Conversely, sulphur shows a U-shaped diffusion profile. These results have potential implications for the processing thin-film CdTe devices

    Characterization of CdTe photovoltaic devices passivated using hydrogen plasma

    Get PDF
    Thin-film polycrystalline CdTe photovoltaic devices were studied using electrical and material characterization methods to understand the effects of hydrogen plasma passivation treatment. Devices were fabricated using sublimation and were exposed to hydrogen plasma for 10, 20 and 30 minutes. Current density vs voltage measurements were performed to measure the performance of the devices. Capacitance vs voltage graphs showed that dopants are active and the device behaved like a CdCl2 passivated device. Microscopic characterization was performed using SEM and (S)TEM that showed larger grains and more homogenous film coverage as compared to films without passivation suggesting grain growth during H2 passivation

    Cadmium chloride assisted re-crystallisation of CdTe: The effect on the CdS window layer

    Get PDF
    © 2015 Materials Research Society. The cadmium chloride annealing treatment is an essential step in the manufacture of efficient thin film CdTe solar cells. In previous work we have shown that the primary effect of the treatment is to remove high densities of stacking faults from the as-deposited material. Use of density functional theory has shown that some of the higher energy stacking faults are hole traps. Removal of these defects dramatically improves cell efficiency. In this study we focus on the effect of the activation treatment on the underlying n-type cadmium sulphide layer. A range of techniques has been used to observe the changes to the microstructure as well as the chemical and crystallographic changes as a function of treatment parameters. Electrical tests that link the device performance with the micro-structural properties of the cells have also been undertaken. Techniques used include High Resolution Transmission Electron Microscopy (HRTEM) for subgrain analysis, EDX for chemical analysis and XPS and SIMS for composition-depth profiling. By studying the effect of increasing the treatment time and temperature, we will show that the cadmium sulphide layer depletes to the point of complete dissolution into the absorber layer. We will also show that chlorine penetrates and decorates the grain boundaries in the cadmium sulphide. In addition we will show that chlorine builds up at the heterojunction and concentrates in voids at the cadmium telluride/cadmium sulphide interface. A combination of these effects damages the electrical performance of the solar cell

    Cadmium chloride-assisted re-crystallization of CdTe: the effect of annealing over-treatment

    Get PDF
    Although the cadmium chloride treatment is an essential process for high efficiency thin film cadmium telluride photovoltaic devices, the precise mechanisms involved that improve the cadmium telluride layer are not fully understood. The treatment parameters have a narrow window, deviating from these even slightly can be detrimental to cell performance. In this investigation we apply advanced microstructural characterization techniques to study the effects of varying two parameters: the temperature of the substrate during the cadmium chloride treatment and the length of time of the treatment. In both cases, the devices have been deliberately over-treated. The effect of the over-treatment on the microstructure of cadmium telluride solar cells, deposited by close spaced sublimation is investigated and related to cell performance. A range of techniques has been used to observe the changes to the microstructure as well as the chemical and crystallographic changes as a function of treatment parameters. Electrical tests that link the device performance with the microstructural properties of the cells have also been undertaken. Techniques used include Transmission Electron Microscopy (TEM) for sub-grain analysis, EDX for chemical analysis and XPS for composition-depth profiling

    Effect of the cadmium chloride treatment on RF sputtered Cd0.6Zn0.4Te films for application in multijunction solar cells

    Get PDF
    Single phase Cd0.6 Zn 0.4Te (CdZnTe) films of 1 μm thickness were deposited by radio frequency planar magnetron sputter deposition on commercial soda lime glass samples coated with fluorine-doped tin oxide and cadmium sulphide (CdS). The stack was then treated with cadmium chloride (CdCl2) at different temperatures using a constant treatment time. The effect of the CdCl2 treatment was studied using optical, materials, and electrical characterization of the samples and compared with the as-deposited CdZnTe film with the same stack configuration. The band gap deduced from Tauc plots on the as-deposited CdZnTe thin film was 1.72 eV. The deposited film had good crystalline quality with a preferred orientation along the {111} plane. After the CdCl2 treatment, the absorption edge shifted toward longer wavelength region and new peaks corresponding to cadmium telluride (CdTe) emerged in the x-ray diffraction pattern. This suggested loss of zinc after the CdCl2 treatment. The cross sectional transmission electron microscope images of the sample treated at 400 °C and the energy dispersive elemental maps revealed the absence of chlorine along the grain boundaries of CdZnTe and residual CdTe. The presence of chlorine in the CdTe devices plays a vital role in drastically improving the device performance which was not observed in CdZnTe samples treated with CdCl2. The loss of zinc from the surface and incomplete recrystallization of the grains together with the presence of high densities of stacking faults were observed. The surface images using scanning electron microscopy showed that the morphology of the grains changed from small spherical shape to large grains formed due to the fusion of small grains with distinct grain boundaries visible at the higher CdCl2 treatment temperatures. The absence of chlorine along the grain boundaries, incomplete recrystallization and distinct grain boundaries is understood to cause the poor performance of the fabricated devices

    Activation of thin film CdTe solar cells using a cadmium bromide treatment

    Get PDF
    The activation of CdTe with a cadmium chloride annealing treatment is a vital step in the fabrication of high efficiency solar cells. Thin film MZO/CdTe cells have been activated using CdBr2 instead of CdCl2 with a lower activation process temperature. Using this method, CdBr2 does activate the cell as revealed by J-V and EQE measurements. TEM and EDX elemental maps from device cross-sections confirm that bromine is present in the grain boundaries. TEM shows that the treatment removes stacking faults at 425 °C. CdBr2 treatment resulted in a relatively modest conversion efficiency of 5.49% when treated at 375 °C. Nevertheless, the experiments shed further light on the mechanisms involved in the activation

    The effect of a post-activation annealing treatment on thin film CdTe device performance

    Get PDF
    The cadmium chloride activation treatment of cadmium telluride solar cells is essential for producing high efficiency devices. The treatment has many effects but the most significant is the complete removal of stacking faults in the cadmium telluride grains and the diffusion of Chlorine along the grain boundaries of the device. Chlorine decorates all cadmium telluride and cadmium sulphide grain boundaries and also builds up along the CdTe/CdS junction. . This paper reveals that by annealing devices to temperatures of 400ºC to 480 ºC for times ranging from 30 to 600 seconds in moderate vacuum results in the re-appearance of stacking faults and the removal of Choline from the grain boundaries. STEM analysis confirms the re-appearance of the stacking faults and SIMS and EDX confirm the removal of chlorine from the grain boundaries. This directly corresponds to a lowering in cell efficiency. The study provides further evidence that CdCl2 diffusion and certain microstructural defects directly affect the performance of cadmium telluride photovoltaic devices

    Effect of CdCl2 passivation treatment on microstructure and performance of CdSeTe/CdTe thin-film photovoltaic devices

    Get PDF
    The effects of the CdCl2passivation treatment on thin-film CdTe photovoltaic films and devices have been extensively studied. Recently, with an addition of CdSeTe layer at the front of the absorber layer, device conversion efficiencies in excess of 19% have been demonstrated. The effects of the CdCl2passivation treatment for devices using CdSeTe has not been studied previously. This is the first reported study of the effect of the treatment on the microstructure of the CdSeTe /CdTe absorber. The device efficiency is < 1% for the as-deposited device but this is dramatically increased by the CdCl2treatment. Using Scanning Transmission Electron Microscopy (STEM), we show that the CdCl2passivation of CdSeTe/CdTe films results in the removal of high densities of stacking faults, increase in grain size and reorientation of grains. The CdCl2treatment leads to grading of the absorber CdSeTe/CdTe films by diffusion of Se between the CdSeTe and CdTe regions. Chlorine decorates the CdSeTe and CdTe grain boundaries leading to their passivation. Direct evidence for these effects is presented using STEM and Energy Dispersive X-ray Analysis (EDX) on device cross-sections prepared using focused ion beam etching. The grading of the Se in the device is quantified using EDX line scans. The comparison of CdSeTe/CdTe device microstructure and composition before and after the CdCl2treatment provides insights into the important effects of the process and points the way to further improvements that can be made
    corecore